Static and Dynamic Load Test of Toru-4 Bar Composite Steel Bridge

Authors

  • Heri Khoeri Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Jakarta
  • Panji Nugroho PT. Hesa Laras Cemerlang

DOI:

https://doi.org/10.33603/jki.v13i3.10749

Keywords:

Dinamis, Jembatan, Kelaikan, Statis

Abstract

Bridges are vital infrastructure that require feasibility evaluation before being used to ensure user safety. Feasibility assessment can be done through dynamic and static tests. The dynamic parameters used are natural frequency and damping ratio, while static parameters include deflection and strain during loading. This study conducted forced vibration tests and static load tests on the Batang Toru-4 Bridge. The vibration test results showed a natural frequency of 3,248 Hz, lower than the minimum limit of 3,357 Hz according to Bina Marga empirical data, but still above the British Standard, and a damping ratio of 7.636%, indicating an indication of excessive energy dissipation which is generally due to defects in the structure. However, the static test showed a maximum deflection at 100% UDL of 11.9 mm, still far below the permissible limit of 50 mm. The residual deflection ratio was also only 0.044, still below the permissible limit of 0.2. Therefore, with these results, the bridge was declared functionally fit, but it was recommended to conduct further checks to ensure that excessive damping was not caused by structural damage. The calculated relative capacity is approached by a more conservative dynamic load test compared to a static load test, so that the dynamic load test is an alternative test with a relatively faster time, easier and more conservative results compared to the static load test.

References

[1] Kementerian Pekerjaan Umum dan Perumahan Rakyat Direktorat Jenderal Bina Marga, Spesifikasi Umum 2018 untuk Pekerjaan Konstruksi Jalan dan Jembatan (Revisi 2). 2018.

[2] E. O. L. Lantsoght, “Assessment of existing concrete bridges by load testing: barriers to code implementation and proposed solutions,” Structure and Infrastructure Engineering, pp. 1–13, Oct. 2023, doi: 10.1080/15732479.2023.2264825.

[3] K. Tu, Y. Ye, D. Wu, Y. Zhou, and W. Deng, “Technical Analysis of Highway Bridge Static Load Test,” Journal of Architectural Research and Development, vol. 7, no. 3, pp. 58–63, May 2023, doi: 10.26689/jard.v7i3.4829.

[4] B. Li, H. Liu, J. Jian, and H. Gao, “Static Load Test Analysis of T-Beam Bridge Shear Strengthening by Prestressed Steel Wire Rope Embedded in Polyurethane Cement (PSWR-PUC),” Sustainability, vol. 15, no. 13, p. 10514, Jul. 2023, doi: 10.3390/su151310514.

[5] F. Liu, J. Wang, M. Li, F. Gu, and A. D. Ball, “Operational Modal Analysis of Y25 Bogie via Stochastic Subspace Identification for the Condition Monitoring of Primary Suspension Systems,” in ICDAS: International Conference on Damage Assessment of Structures, M. Abdel Wahab, Ed., Porto, Portugal: Springer, Jul. 2020, pp. 166–181. doi: 10.1007/978-981-13-8331-1_12.

[6] H. Khoeri, W. Isvara, D. Sofiana, and F. Natasa, “Penilaian Kelaikan Jembatan Berdasarkan Parameter Dinamis Experimental pada Jembatan PC-I Girder 40 m,” Jurnal Aplikasi Teknik Sipil, 2024.

[7] H. Khoeri, S. W. Alisjahbana, and P. Nugroho, “Uji Beban Dinamik dan Analisis Modal Operasional Jembatan Baja Komposit Underpass Bekambit,” Dinamika Rekayasa, vol. 20, no. 1, pp. 65–75, Jan. 2024, doi: 10.20884/1.dinarek.2024.20.1.20.

[8] Y. Xu, J. M. W. Brownjohn, and D. Hester, “Enhanced sparse component analysis for operational modal identification of real-life bridge structures,” Mech Syst Signal Process, vol. 116, pp. 585–605, Feb. 2019, doi: 10.1016/j.ymssp.2018.07.026.

[9] A. Ali, T. Sandhu, and M. Usman, “Ambient Vibration Testing of a Pedestrian Bridge Using Low-Cost Accelerometers for SHM Applications,” Smart Cities, vol. 2, no. 1, pp. 20–30, Jan. 2019, doi: 10.3390/smartcities2010002.

[10] M. Salehi, S. M. Esfarjani, and M. Ghorbani, “Modal Parameter Extraction of a Huge Four Stage Centrifugal Compressor Using Operational Modal Analysis Method,” Latin American Journal of Solids and Structures, vol. 15, no. 3, pp. 1–11, May 2018, doi: 10.1590/1679-78254117.

[11] S. Gres, P. Andersen, C. Hoen, and L. Damkilde, “Orthogonal Projection-Based Harmonic Signal Removal for Operational Modal Analysis,” 2019, pp. 9–21. doi: 10.1007/978-3-319-74476-6_2.

[12] H. Khoeri and S. W. Alisjahbana, “Pemeriksaan Getaran Struktur dan Rekomendasi Perkuatan untuk Peningkatan Kapasitas Beban dan Pengurangan Getaran,” Konstruksia, vol. 15, no. 1, p. 79, Dec. 2023, doi: 10.24853/jk.15.1.79-96.

[13] E. Ercan, “Assessing the impact of retrofitting on structural safety in historical buildings via ambient vibration tests,” Constr Build Mater, vol. 164, pp. 337–349, Mar. 2018, doi: 10.1016/j.conbuildmat.2017.12.154.

[14] Direktorat Jenderal Bina Marga Kementerian Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia, “Laporan Uji Dinamik Jembatan,” Jakarta, 2014.

[15] R. Cantieni, “Dynamic Load Tests on Highway Bridges in Switzerland,” Dübendorf, Switzerland , 1983.

[16] P. Paultre, O. Chaallal, and J. Proulx, “Bridge dynamics and dynamic amplification factors — a review of analytical and experimental findings,” Canadian Journal of Civil Engineering, vol. 19, no. 2, pp. 260–278, Apr. 1992, doi: 10.1139/l92-032.

[17] R. Heywood, W. Roberts, and G. Boully, “Dynamic loading of bridges,” in Transportation Research Record, National Research Council, 2001, pp. 58–66. doi: 10.3141/1770-09.

[18] British Standards Institution, BS EN 1991-2:2003; Eurocode 1: Actions on structures - Part 2: Traffic loads on bridges. London: BSI, 2003.

[19] D. Pamungkas, S. R. Kurniawan, and B. F. Simamora, “Perbandingan Antara Domain Waktu dan Frekuensi untuk Pengenalan Sinyal EMG,” Jurnal Rekayasa Elektrika, vol. 17, no. 1, pp. 36–41, Mar. 2021, doi: 10.17529/jre.v17i1.16844.

[20] Direktorat Jenderal Bina Marga, Pedoman Konstruksi dan Bangunan Pt T-05-2002-B, Penilaian Kondisi Jembatan untuk Bangunan atas dengan Cara Uji Getar. Jakarta, Indonesia: Direktorat Jenderal Bina Marga, 2002.

[21] A. K. Chopra, Dynamics of Structures: Theory and Applications to Earthquake Engineering. in Civil Engineering and Engineering Mechanics Series. Prentice Hall, 2012.

[22] Direktorat Jenderal Bina Marga Departemen Pekerjaan Umum Republik Indonesia, Manual Pelaksanaan Pengujian Jembatan. 2012.

[23] F. N. Kudu, Ş. Uçak, G. Osmancikli, T. Türker, and A. Bayraktar, “Estimation of damping ratios of steel structures by Operational Modal Analysis method,” J Constr Steel Res, vol. 112, pp. 61–68, Sep. 2015, doi: 10.1016/j.jcsr.2015.04.019.

Downloads

Published

2025-12-31