PEMAHAMAN KONSEP MATEMATIS: DARI KOGNISI INDIVIDUAL MENUJU PRAKTIK EPISTEMIK–DISKURSIF

Penulis

  • Irmawati Liliana Kusuma Dewi Universitas Swadaya Gunung Jati
  • Cita Dwi Rosita Universitas Swadaya Gunung Jati
  • Marwia Tamrin Bakar Universitas Khairun

DOI:

https://doi.org/10.33603/e.v13i1.11834

Kata Kunci:

pemahaman konsep matematis, pendidikan tinggi, praktik epistemik, diskursus matematika, systematic literature review

Abstrak

Pemahaman konsep matematis merupakan tujuan fundamental pembelajaran matematika, khususnya di pendidikan tinggi yang menuntut mahasiswa untuk berinteraksi dengan konsep abstrak, struktur formal, dan relasi antarkonsep. Meskipun demikian, berbagai penelitian menunjukkan bahwa praktik pembelajaran masih cenderung menekankan keberhasilan prosedural dibandingkan kedalaman pemahaman konseptual. Artikel ini bertujuan untuk mensintesis secara sistematis penelitian tentang pemahaman konsep matematis mahasiswa dengan mengadopsi perspektif epistemik–diskursif. Penelitian ini menggunakan pendekatan systematic literature review terhadap artikel-artikel terindeks Scopus periode 2014–2024 yang berfokus pada pendidikan tinggi. Hasil kajian menunjukkan bahwa pemahaman konsep matematis dikonstruksi melalui interaksi antara representasi matematis, diskursus dan komunikasi, penalaran matematis, serta norma epistemik yang berlaku dalam pembelajaran. Temuan juga mengungkap bahwa pemahaman konsep tidak dapat dipahami semata-mata sebagai atribut kognitif individual, melainkan sebagai praktik yang berkembang melalui partisipasi mahasiswa dalam aktivitas matematika formal. Berdasarkan sintesis tersebut, artikel ini mengusulkan sebuah kerangka konseptual integratif yang memosisikan pemahaman konsep matematis sebagai praktik epistemik–diskursif. Kerangka ini diharapkan dapat memperkaya kajian teoretis serta menjadi dasar bagi penelitian dan desain pembelajaran matematika di pendidikan tinggi.

Referensi

Arcavi, A., Drijvers, P., & Stacey, K. (2017). The learning and teaching of algebra: Ideas, insights and activities. Educational Studies in Mathematics, 94(3), 231–239. https://doi.org/10.1007/s10649-016-9720-1

Bingolbali, E., Monaghan, J., & Roper, T. (2011). Engineering students’ conceptions of function. Educational Studies in Mathematics, 77(2), 227–246. https://doi.org/10.1007/s10649-010-9277-2

Bossé, M. J., Adu-Gyamfi, K., & Chandler, K. (2014). Students’ differentiated translation processes. International Journal of Mathematical Education in Science and Technology, 45(6), 759–781. https://doi.org/10.1080/0020739X.2014.892652

Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge. Educational Psychologist, 49(4), 231–247. https://doi.org/10.1080/00461520.2014.973318

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z

Durkin, K., Rittle-Johnson, B., & Star, J. R. (2017). The greater effectiveness of conceptual instruction. Journal of Educational Psychology, 109(4), 581–597. https://doi.org/10.1037/edu0000150

Engelbrecht, J., Bergsten, C., & Kågesten, O. (2012). Conceptual and procedural approaches to mathematics in higher education. Educational Studies in Mathematics, 79(1), 55–70. https://doi.org/10.1007/s10649-011-9343-8

Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Information Age Publishing.

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1–27). Lawrence Erlbaum Associates.

Inglis, M., Mejía-Ramos, J. P., & Simpson, A. (2018). The role of epistemic beliefs in proof comprehension. Educational Studies in Mathematics, 98(3), 299–318. https://doi.org/10.1007/s10649-018-9827-4

Kadunz, G., & Sträßer, R. (2015). Didactical obstacles and epistemological constraints. ZDM–Mathematics Education, 47(4), 583–594. https://doi.org/10.1007/s11858-015-0698-z

Morgan, C. (1998). Writing mathematically: The discourse of investigation. Falmer Press.

Nardi, E., Biza, I., & Zachariades, T. (2019). Mathematical discourse in higher education. Educational Studies in Mathematics, 100(2), 157–175. https://doi.org/10.1007/s10649-018-9861-2

Oner, D., & Adadan, E. (2015). Use of multimodal representations in mathematical explanations. Educational Studies in Mathematics, 88(3), 343–365. https://doi.org/10.1007/s10649-014-9589-3

Radford, L. (2008). Semiotics in mathematics education. Educational Studies in Mathematics, 69(2), 101–115. https://doi.org/10.1007/s10649-008-9120-8

Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge. Educational Psychologist, 50(1), 1–17. https://doi.org/10.1080/00461520.2014.945532

Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street. Educational Psychology Review, 27(4), 617–641. https://doi.org/10.1007/s10648-015-9302-x

Schoenfeld, A. H. (2015). Why aren’t we measuring what we value? Educational Researcher, 44(8), 491–497. https://doi.org/10.3102/0013189X15621551

Selden, A., Selden, J., & Nardi, E. (2020). Norms and practices in undergraduate proof. Educational Studies in Mathematics, 104(2), 123–141. https://doi.org/10.1007/s10649-020-09948-9

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge University Press.

Sfard, A., & Kieran, C. (2001). Cognition as communication. Educational Studies in Mathematics, 46(1–3), 1–14. https://doi.org/10.1023/A:1014007301894

Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411. https://doi.org/10.2307/30034942

Star, J. R., & Stylianides, G. J. (2013). Procedural and conceptual knowledge. Canadian Journal of Science, Mathematics and Technology Education, 13(2), 169–187. https://doi.org/10.1080/14926156.2013.784828

Stylianides, A. J., & Stylianides, G. J. (2014). Developing students’ proof competencies. Educational Studies in Mathematics, 85(3), 307–331. https://doi.org/10.1007/s10649-013-9507-5

Tall, D. (2013). How humans learn to think mathematically. Cambridge University Press.

Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G., & Larson, C. (2017). Inquiry-oriented instruction. Educational Studies in Mathematics, 95(1), 1–20. https://doi.org/10.1007/s10649-016-9733-9

Diterbitkan

2026-01-30

Terbitan

Bagian

Artikel