PEMAHAMAN KONSEP MATEMATIS: DARI KOGNISI INDIVIDUAL MENUJU PRAKTIK EPISTEMIK–DISKURSIF
DOI:
https://doi.org/10.33603/e.v13i1.11834Kata Kunci:
pemahaman konsep matematis, pendidikan tinggi, praktik epistemik, diskursus matematika, systematic literature reviewAbstrak
Pemahaman konsep matematis merupakan tujuan fundamental pembelajaran matematika, khususnya di pendidikan tinggi yang menuntut mahasiswa untuk berinteraksi dengan konsep abstrak, struktur formal, dan relasi antarkonsep. Meskipun demikian, berbagai penelitian menunjukkan bahwa praktik pembelajaran masih cenderung menekankan keberhasilan prosedural dibandingkan kedalaman pemahaman konseptual. Artikel ini bertujuan untuk mensintesis secara sistematis penelitian tentang pemahaman konsep matematis mahasiswa dengan mengadopsi perspektif epistemik–diskursif. Penelitian ini menggunakan pendekatan systematic literature review terhadap artikel-artikel terindeks Scopus periode 2014–2024 yang berfokus pada pendidikan tinggi. Hasil kajian menunjukkan bahwa pemahaman konsep matematis dikonstruksi melalui interaksi antara representasi matematis, diskursus dan komunikasi, penalaran matematis, serta norma epistemik yang berlaku dalam pembelajaran. Temuan juga mengungkap bahwa pemahaman konsep tidak dapat dipahami semata-mata sebagai atribut kognitif individual, melainkan sebagai praktik yang berkembang melalui partisipasi mahasiswa dalam aktivitas matematika formal. Berdasarkan sintesis tersebut, artikel ini mengusulkan sebuah kerangka konseptual integratif yang memosisikan pemahaman konsep matematis sebagai praktik epistemik–diskursif. Kerangka ini diharapkan dapat memperkaya kajian teoretis serta menjadi dasar bagi penelitian dan desain pembelajaran matematika di pendidikan tinggi.
Referensi
Arcavi, A., Drijvers, P., & Stacey, K. (2017). The learning and teaching of algebra: Ideas, insights and activities. Educational Studies in Mathematics, 94(3), 231–239. https://doi.org/10.1007/s10649-016-9720-1
Bingolbali, E., Monaghan, J., & Roper, T. (2011). Engineering students’ conceptions of function. Educational Studies in Mathematics, 77(2), 227–246. https://doi.org/10.1007/s10649-010-9277-2
Bossé, M. J., Adu-Gyamfi, K., & Chandler, K. (2014). Students’ differentiated translation processes. International Journal of Mathematical Education in Science and Technology, 45(6), 759–781. https://doi.org/10.1080/0020739X.2014.892652
Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge. Educational Psychologist, 49(4), 231–247. https://doi.org/10.1080/00461520.2014.973318
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z
Durkin, K., Rittle-Johnson, B., & Star, J. R. (2017). The greater effectiveness of conceptual instruction. Journal of Educational Psychology, 109(4), 581–597. https://doi.org/10.1037/edu0000150
Engelbrecht, J., Bergsten, C., & Kågesten, O. (2012). Conceptual and procedural approaches to mathematics in higher education. Educational Studies in Mathematics, 79(1), 55–70. https://doi.org/10.1007/s10649-011-9343-8
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Information Age Publishing.
Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1–27). Lawrence Erlbaum Associates.
Inglis, M., Mejía-Ramos, J. P., & Simpson, A. (2018). The role of epistemic beliefs in proof comprehension. Educational Studies in Mathematics, 98(3), 299–318. https://doi.org/10.1007/s10649-018-9827-4
Kadunz, G., & Sträßer, R. (2015). Didactical obstacles and epistemological constraints. ZDM–Mathematics Education, 47(4), 583–594. https://doi.org/10.1007/s11858-015-0698-z
Morgan, C. (1998). Writing mathematically: The discourse of investigation. Falmer Press.
Nardi, E., Biza, I., & Zachariades, T. (2019). Mathematical discourse in higher education. Educational Studies in Mathematics, 100(2), 157–175. https://doi.org/10.1007/s10649-018-9861-2
Oner, D., & Adadan, E. (2015). Use of multimodal representations in mathematical explanations. Educational Studies in Mathematics, 88(3), 343–365. https://doi.org/10.1007/s10649-014-9589-3
Radford, L. (2008). Semiotics in mathematics education. Educational Studies in Mathematics, 69(2), 101–115. https://doi.org/10.1007/s10649-008-9120-8
Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge. Educational Psychologist, 50(1), 1–17. https://doi.org/10.1080/00461520.2014.945532
Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street. Educational Psychology Review, 27(4), 617–641. https://doi.org/10.1007/s10648-015-9302-x
Schoenfeld, A. H. (2015). Why aren’t we measuring what we value? Educational Researcher, 44(8), 491–497. https://doi.org/10.3102/0013189X15621551
Selden, A., Selden, J., & Nardi, E. (2020). Norms and practices in undergraduate proof. Educational Studies in Mathematics, 104(2), 123–141. https://doi.org/10.1007/s10649-020-09948-9
Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge University Press.
Sfard, A., & Kieran, C. (2001). Cognition as communication. Educational Studies in Mathematics, 46(1–3), 1–14. https://doi.org/10.1023/A:1014007301894
Star, J. R. (2005). Reconceptualizing procedural knowledge. Journal for Research in Mathematics Education, 36(5), 404–411. https://doi.org/10.2307/30034942
Star, J. R., & Stylianides, G. J. (2013). Procedural and conceptual knowledge. Canadian Journal of Science, Mathematics and Technology Education, 13(2), 169–187. https://doi.org/10.1080/14926156.2013.784828
Stylianides, A. J., & Stylianides, G. J. (2014). Developing students’ proof competencies. Educational Studies in Mathematics, 85(3), 307–331. https://doi.org/10.1007/s10649-013-9507-5
Tall, D. (2013). How humans learn to think mathematically. Cambridge University Press.
Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G., & Larson, C. (2017). Inquiry-oriented instruction. Educational Studies in Mathematics, 95(1), 1–20. https://doi.org/10.1007/s10649-016-9733-9
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2026 irmawati liliana

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
The author who published his work in this journal agrees to the following terms:
The author reserves the copyright and grants the first publishing rights journal, with works simultaneously licensed under the License:Â Â Creative Commons Attribution - Share Alike 4.0 Internasional License that enables others to share works with the acknowledgment of early publication and authorship of the work in this journal.
Penulis yang menerbitkan karyanya ke jurnal ini setuju dengan persyaratan berikut:
Penulis menyimpan hak cipta dan memberikan jurnal hak penerbitan pertama, dengan karya yang secara serentak dilisensikan di bawah Lisensi: Creative Commons Attribution - Share Alike 4.0 Internasional License yang memungkinkan orang lain membagikan karya dengan pengakuan penerbitan awal dan kepenulisan karya di jurnal ini.







