JURNAL KONSTRUKSI

ISSN: 2085-8744

Analisis Kinerja Sistem Daerah Irigasi Bendung Cikeusik Kabupaten Kuningan

Iyep Inayatullah*, Akbar Winasis**

*) Mahasiswa Jurusan Teknik Sipil Fakultas Teknik Universitas Swadaya Gunung Jati Cirebon **) Staf Pengajar pada Jurusan Teknik Sipil Fakultas Teknik Universitas Swadaya Gunung Jati Cirebon

ABSTRAK

Bendung Cikeusik ini masuk wilayah Kecamatan Cidahu Kabupaten Kuningan Jawa Barat, Areal layanan Daerah Irigasi Bendung Cikeusik adalah \pm 7.126 Ha pada tahun 2002/2003, telah mengalami alih fungsi dan areal yang ada sekarang seluas 6.899 Ha mencakup 61 Desa dan 7 Kecamatan.

Analisis ini bertujuan untuk dijadikan sebagai acuan evaluasi dari kinerja daerah irigasi pada Bendung Cikeusik dengan cara menganalisis kondisi fisik jaringan irigasi DI Bendung Cikeusik, menganalisis debit dari DI Bendung Cikeusik, menganalisis pola tanam DI.Cikeusik, menganalisis tenaga pengelola DI Bendung Cikeusik dan Biaya OP DI Bendung Cikeusik.

Metode yang digunakan dalam penelitian ini adalah metode kualitatif, dimana dalam pemecahan masalahnya menggambarkan subjek dan atau objek penelitian berdasarkan fakta – fakta yang diperoleh selama penelitian dalam kinerja sistem irigasi dan usaha mengemukakan hubungan secara mendalam dari aspek – aspek yang diteliti.

Berdasarkan kondisi saluran, dapat diketahui bahwa kondisi banguan dan saluran pada Daerah Irigasi Bendung Cikeusik sedikit mengalami kerusakan, kerusakan untuk kondisi bangunan mencapai rata – rata 33,89%. Dan untuk Kondisi saluran irigasi mencapai rata – rata 0,87%. Yang berdampak pada menurunya fungsi jaringan irigasi sehingga pelayanan air pada Daerah Irigasi Cikeusik menjadi kurang optimal. Perlu adanya perbaikan atau pergantian alat-alat yang ruksak, sedangkan untuk kondisi saluran irigasi perlu adanya pemeliharaan rutin dan berkala.

Kata Kunci: Analisis Sistem Kinerja, Daerah Irigasi

ABSTRACT

Cikeusik dam is located on Cidahu sub district, Kuningan regency, West Java. On 2002/2003, Cikeusik dam served \pm 7.126 as its service area, but it has function shifting nowadays with nearly 6.899 Ha where including 61 villages and 7 sub districts.

This analysis was aimed at becoming performance evaluation of Cikeusik dam irrigation area by analyzing physical appearance of irrigation system in Cikeusik dam, examining debit and cultivation pattern in Cikeusik dam, as well as evaluating controller staff and operational cost in Cikeusik dam.

Qualitative method was used in this research where it describes the research object or subject based on the facts that were gained during the research was taken place about irrigation performance system and the efforts on revealing the relation among the aspects which are being studied.

Based to canal condition, it can be seen that Cikeusik dam's canal and its constructions were damaged. Building damage rate reached to 33,89% in average, while irrigation canal damage extended to 0,87% in average. The damages affected to the water services which are less maximal. It is needed the improvement or replacement the damage parts, meanwhile for irrigation canal condition, it needs the routine and periodic maintenance.

Keywords: Performance Analysis System, Irrigation Area

I. PENDAHULUAN

A. LATAR BELAKANG

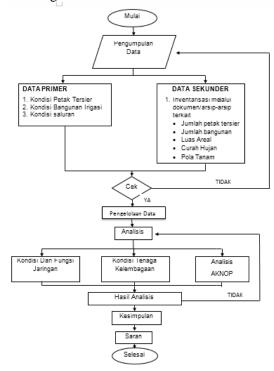
Air adalah dasar dari suatu kehidupan dan merupakan suatu unsur yang dibutuhkan dalam kehidupan manusia. Keberadaan air tidak bisa dilepaskan begitu saja dari kehidupan makhluk hidup di seluruh bumi ini. Air sebagai salah satu dari keempat unsur alam memang sangat diperlukan dan bermanfaat besar, tidak hanya bagi manusia melainkan juga bagi hewan dan tumbuhan.

Daerah Irigasi Bendung Cikeusik berlokasi di Kecamatan Cidahu Kabupaten Kuningan. Areal layanan DI. Bendung Cikeusik adalah ± 7.126 Ha pada tahun 2002/2003, telah mengalami alih fungsi dan areal yang ada sekarang seluas 6.924 Ha mencakup 61 Desa dan 7 Kecamatan. Adapun yang mempengaruhi Sistem Irigasi pada Daerah Irigasi Bendung Cikeusik antara lain kerusakan sarana dan prasarana yang mengakibatkan pengaturan air Irigasi tidak efektif dan efisien serta kurang seimbangnya antara debit yang tersedia dengan debit yang di butuhkan.

A. RUMUSAN MASALAH

Berdasarkan uraian latar belakang di atas maka dapat di identifikasikan permasalahannya sebagai berikut:

- 1. Bagaimana kinerja sistem daerah Irigasi Bendung Cikeusik?
- 2. Bagaimana kondisi debit ketersediaan, debit kebutuhan air irigasi dan jaringan Irigasi (saluran dan bangunan) ?
- 3. Bagaimana kinerja dari kelembagaan pada daerah Irigasi tersebut ?
- 4. Bagaimana dengan Angka Kebutuhan Operasi dan Pemeliharaan (AKNOP) ?


B. TUJUAN PENELITIAN

Tujuan dari analisis sistem irigasi pada Daerah Irigasi Bendung Cikeusik adalah :

- 1. Untuk menganalisis kinerja jaringan irigasi
- 2. Untuk menganalisis debit (ketersediaan, kebutuhan)
- 3. Untuk menganalisis kinerja kelembagaan pada pengelolaan jaringan irigas
- 4. Untuk menganalisis angka kebutuhan operasi dan pemeliharaan dari saluran primer, sekunder dan tersier

2. KERANGKA PEMIKIRAN Gambar 1

Diagram Alur / Flowchart Penelitian

II. TINJAUAN PUSTAKA DAN LANDASAN TEORI

A. PENELITIAN YANG DILAKUKAN SEBELUMNYA

- Evaluasi Kinerja OP Jaringan Irigasi dan Upaya Perbaikannya (Sumaryanto, Masdjidin Siregar, Deri Hidayat, M. Suryadi Pusat Analisis Sosial Ekonomi Dan Kebijakan Pertanian Badan Penelitian Dan Pengembangan Pertanian Departemen Pertanian (2006)
- 2. Evaluasi Operasi Dan Pemeliharaan Bendung Cangkuang Kecamatan Babakan Kabupaten Cirebon (Ade Joni Alfian, 2013 Skripsi Universitas Swadaya Gunung Jati Cirebon)
- Kajian Sistem Jaringan Irigasi Rentang Pada Saluran Induk Utara Kabupaten Indramayu (Budhiono, 2011 Skripsi Universitas Swadaya Gunung Jati Cirebon)
- 4. Evaluasi Kinerja Sistem Bendung Walahar Di Sungai Ciwaringin Kabupaten Cirebon (Sumber dari skripsi Haeruddin)

B. LANDASAN TEORI 1. DESKRIPSI WILAYAH

Daerah Irigasi Bendung Cikeusik berlokasi di Kecamatan Cidahu Kabupaten Kuningan.

Areal layanan DI. Bendung Cikeusik adalah ± 7.126 Ha pada tahun 2002/2003, telah mengalami alih fungsi dan areal yang ada sekarang seluas 6.899 Ha mencakup 61 Desa dan 7 Kecamatan.

Daerah Irigasi Bendung Cikeusik melayani 7 (Tujuh) kemantren yaitu:

- Kemantren Waled (272 Ha)
- Kemantren Pabuaran (585 Ha)
- Kemantren Ciledug (687 Ha)
- Kemantren Pabedilan (1.820 Ha)
- Kemantren Losari (1.589 Ha)
- Kemantren Babakan (924 Ha)
- Kemantren Gebang (1022 Ha)

2. ANALISIS

Analisis adalah aktivitas yang memuat sejumlah kegiatan seperti mengurai, membedakan, memilah sesuatu untuk digolongkan dan dikelompokkan kembali menurut kriteria tertentu kemudian dicari kaitannya dan ditafsirkan maknanya. Dalam pengertian yang lain, analisis adalah sikap atau perhatian terhadap sesuatu (benda, fakta, fenomena) sampai mampu menguraikan menjadi bagian-bagian, serta mengenal kaitan antar bagian tersebut dalam keseluruhan. Analisis dapat juga diartikan sebagai kemampuan memecahkan atau menguraikan sesuatu materi atau informasi menjadi komponen-komponen yang lebih kecil sehingga lebih mudah dipahami.

Menurut Wiradi mengemukakan bahwa : Analisis adalah aktivitas yang memuat sejumlah kegiatan seperti mengurai, membedakan, memilah sesuatu untuk digolongkan dan dikelompokkan kembali menurut kriteria tertentu kemudian dicari kaitannya dan ditaksir maknanya.

Jadi, dari pengertian analisis diata, dapat disimpulkan bahwa analisis adalah sekumpulan aktivitas dan proses. Salah satu bentuk analisis adalh merangkum sejumlah besar data yang masih mentah menjadi informasi yang dapat diinterpretasikan. Semua bentuk analisis berusaha menggambarkan pola-pola secara konsisten dalam data sehingga hasilnya dapat dipelajari dan diterjemahkan dengan cara yang singkat dan penuh arti.

3. KINERJA

Merupakan suatu pelaksanaan fungsi-fungsi yang di tuntut dari seseorang atau suatu perbuatan yang di kerjakan . Kinerja merupakan suatu kondisi yang harus di ketahui dan di informasikan kepada pihak tertentu untuk mengetahui tingkat pencapaian hasil suatu instansi dan di hubungkan dengan visi yang di emban suatu organisasi serta untuk megetahui danpak positip dan dampak negative dari suatu kebijakan oprasional: (Jhon Witmore, Coaching for Performance.1997).

4. IRIGASI

Salah satu jenis pemanfaatan sumber air adalah untuk irigasi. Mengingat Indonesia adalah Negara agraris dengan tanaman dan makanan utama penduduknya adalah beras, maka peran irigasi sebagai penghasil utama menduduki posisi penting. Irigasi memerlukan investasi yang besar untuk pembangunan sarana dan prasarana, pengoperasian dan pemeliharaan. Oleh karena itu perlu dilakukan pengelolaan yang baik, benar, dan tepat sehingga pemakaian air untuk irigasi dapat seoptimal mungkin.

Tabel 1Kriteria Penilaian Kondisi Fungsi Saluran dan Bangunan Irigasi

No.	Kriteria Kondisi	Kondisi (%)	Rekomendasi Penanganan
1	Baik (B)	70-100	UpGrading dan optimalisasi
2	Sedang	55 - 70	Rehabilitasi Sedang
3	Kurang	<55	Rehabilitasi Berat

Permen PU No. 32/PRT/IM/2007

5. KEBUTUHAN AIR IRIGASI

Kebutuhan air irigasi adalah jumlah volume air yang diperlukan untuk memenuhi kebutuhan evapotranspirasi, kehilangan air, kebutuhan air untuk tanaman dengan memperhatikan jumlah air yang diberikan oleh alam dan kontribusi air tanah.

Tabel 2Koefisien Tanaman Padi

No	Uraian	Waktu (Bulan)	Kebutuhan Air (L/Det/Ha)
1	Pengolahan Lahan	0,5	1,20
2	Penanaman	0,5	1,00
3	Pertumbuhan	2	0,80
4	Pemasakan	1	0,20
	Jumlah	4	3,20

Sumber: Dirjen pengairan, Blna program PSA 010, 1985

Tabel 3Koefisien Tanaman Palawija

No	Uraian	Waktu (bulan)	Kebutuhan air (L/det/Ha)
1	Pengolahan Lahan	0,5	0,8
2	Penanaman	1,5	0,2
3	Pertumbuhan	0,5	0,2
	Jumlah	2,5	1,20

Sumber: Dirjen pengairan, Blna program PSA 010, 1985

6. POLA TATA TANAM DAN SISTEM GOLONGAN

Untuk memenuhi kebutuhan air bagi tanaman, penentuan pola tanam merupakan hal yang perlu dipertimbangkan. Tabel dibawah ini merupakan contoh pola tanam yang dapat dipakai. Tabel dibawah ini merupakan contoh pola tanam yang dipakai:

Tabel 4Pola Tanam

Ketersediaan Air Untuk Jaringan Irigasi	Pola Tanam Dalam Satu Tahun
Tersedia air cukup banyak	padi - padi – palawija
Tersedia air dalam jumlah cukup	padi - palawija – tebu
Daerah yang cenderung kekurangan air	padi - palawija – bera

Sumber : Dirjen Pengairan (1985)

7. KELEMBAGAAN P3A PADA JARINGAN IRIGASI

Dalam rangka mendorong peran serta petani pemakai air di bidang pengelolaan eksploitasi dan pemeliharaan irigasi, maka upaya menumbuh kembangkan Perkumpulan Petani Pengelola Air (P3A) agar mandiri, perlu diciptakan suasana yang menunjang guna pemberdayaan potensi yang ada pada petani dalam mengelola air irigasi, antara lain melalui Penyerahan Pengelolaan Irigasi (PPI) (Sukasi, 2001 dalam Rostaningsih dan Sakti, 2003)

III. METODE PENELITIAN A. METODE PENELITIAN

Metodologi penelitian merupakan suatu hal terpenting dalam melakukan suatu penelitian karena digunakan untuk menemukan, mengembangkan dan menguji fakta/data yang diteliti untuk diuji kebenarannya.

Metodelogi itu sendiri adalah prosedur yang sistematis dan standar yang diperlukan untuk memperoleh data dan menganalisis data. Pengumpulan data tidak lepas dari suatu proses pengadaan data primer, sebagai langkah awal yang amat penting, karena pada umumnya data yang dikumpulkan digunakan sebagai referensi dalam suatu analisis.(Purwanto,Metodologi Penelitian Kuantitatif, 2006)

B. JENIS DAN SUMBER DATA

1. Teknik Pengunmulan Data

Pada penelitian ini data-data yang diperoleh dengan 2(dua) cara, sebagai berikut :

a. Data Sekunder

Data sekunder merupakan data pendukung yang dipakai dalam proses pembuatan dan penyusunan laporan skripsi, yang dapat diperoleh dari instansi-instansi yang terkait dan data-data pendukung lainnya.

b. Data Primer

Data primer adalah data yang diperoleh dari lokasi analisis maupun hasil survey yang dapat langsung dipergunakan sebagai sumber dalam analisis tersebut.Dalam melakukan pengumpulan data-data primer dilakukan teknik pengumpulan data

2. Sumber Data

Data – data yang digunakan bersumber dari :

- Lokasi kajian..
- unsur / instansi / lembaga terkait

B. METODE ANALISIS

Metode yang digunakan dalam analisis penyusunan skripsi ini adalah sebagai berikut :

1. Analisis Luas Daerah Aliran Sungai (DAS)

Luas Daerah Aliran Sungai (DAS) merupakan keseluruhan DAS sebagai suatu sistem sungai yang diproyeksikan secara horisontal pada bidang datar. Untuk mengetahui luas DAS dapat menggunakan planimeter, kertas milimeter, atau dengan menggunakan digitizer-computer (ITC, 1988). Untuk menghitung luas DAS dapat digunakan beberapa metode sebagai berikut:

a. Metode Segi Empat (Square Method)

Pengukuran metode ini dilakukan dengan cara membuat petak-petak kotak pada daerah yang akan dihitung luasnya. Pada batas tepi yang luasnya setengah kotak atau lebih akan dibulatkan menjadi satu kotak, sedangkan kotak yang luasnya kurang dari setengah kotak akan dihilangkan atau tidak dihitung.

Berikut adalah rumus untuk menghitung luas dengan metode segi empat :

Luas DAS=Jumlah kotak x (luas setiap kotak x

skala)

b. Metode Jalur (Stripped Method)

Pengukuran luas dengan metode jalur ini dilakukan dengan membuat jalur atau garis horisontal yang sejajar dan berinterval sam, kemudian pada bagian tepi jalur ditarik garis keseimbangan. Berikut adalah rumus untuk menghitung luas dengan metode jalur:

Luas DAS=jumlah luas segi empat (jalur)x skala peta

c. Metode Segitiga (Triangle Method)

Pengukuran luas dengan metode segitiga ini dilakukan dengan membuat segitiga-segitiga diseluruh daerah yang akan diukur luasnya pada peta dan pada sisa daerah diluar segitiga ditambahkan garis-garis yang tegak lurus dengan base line (sisi segitiga) yang disebut offset. Berikut ini rumus untuk menghitung luas dengan metode segitiga:

Luas DAS=(jumlah luas segitiga+jumlah luas of f set)x Skala

d. Planimeter

Metode ini merupakan metode pengukuran luas dengan menggunakan alat planimeter. Daerah yang akan diukur harus merupakan poligon atau area tertutup. Cara pengukuran luas menggunakan metode ini sebagai berikut:

- ✓ Kaca pengamat planimeter diletakkan pada titik awal yang akan diukur luasnya.
- ✓ Kemudian alat pengamat digerakkan searah jarum jam mengikuti batas areal yang diukur sampai alat pengamat kembali ke titik awal.
- ✓ Luas area atau daerah yang akan dihitung langsung dapat dibaca pada planimeter.

2. Analisis Rerata Curah Hujan

Data hujan yang tercatat disetiap stasiun penakar hujan adalah tinggi hujan disekitar stasiun tersebut atau disebut sebagai Point Rainfall. Stasiun penakar hujan tersebar didaerah aliran maka akan banyak data curah hujan yang diperoleh yang besarnya tidak sama. Didalam analisa hidrologi diperlukan data hujan rata-rata di daerah aliran (Catchment Area) yang kadang-kadang dihubungkan dengan besarnya aliran yang terjadi.

Ada tiga metode yang dipakai untuk menentukan ketinggian hujan rata-rata (Average depth of rainfall) dari suatu daerah dengan menggunakan data-data stasiun pengamatan :

a. Metode Aritmatik/Rata-Rata Aljabar

Metode ini dipakai untuk daerah-daerah datar dengan pos pengamatan hujan tersebar merata, masing-masing pos mempunyai hasil pengamatan yang tidak jauh berbeda dengan hasil rata-ratanya. Cara menghitungnya adalah sebagai berikut .

 Membagi rata pengukuran pada semua pos hujan terhadap sejumlah stasiun dalam daerah aliran yang bersangkutan.

P rata-rata = $\frac{P1+P2+P3+P4+\cdots n}{n}$ Dimana:

P rata-rata : Tinggi Hujan Rata-Rata

P1, Pn : Tinggi Hujan pada tiap Stasiun Pengamatan

n: Jumlah Stasiun Pengamatan

b. Metode Poligon Thiessen (Thiessen Polygon Method)

Metode ini bisa digunakan untuk daerahdaerah dimana distribusi dari pengamatan hujan tidak tersebar merata, dan hasilnya lebih teliti. Cara menghitung dengan metode ini adalah sebagai berikut:

$$P rata - rata = \frac{P1xA1 + P2xA2 + P3xA3 + \cdots PnxAn}{A \text{ total}}$$

Dimana:

P rata-rata : Tinggi hujan rata-rata

P1, P2, Pn : Tinggi hujan tiap pos hujan A1, A2, An : Luas wilayah tiap pos hujan

A total: Luas wilayah total dari semua pos hujan

c. Metode Isohyet (Isohyetal Method)

Metode ini dipakai untuk menentukan hujan rata-rata pada daerah pegunungan dan persebaran stasiun/pos pengamatannya yang tidak merata. Cara menghitung menggunakan metode ini adalah sebagai berikut :

$$P rata-rata = \frac{\frac{P1+P2}{2}xA1 + \frac{P2+P3}{2}xA2 + \frac{Pn+An}{2}xAn}{A \text{ total}}$$

Dimana

P rata-rata: Tinggi hujan rata-rata

P1, P2, P3, Pn: Tinggi hujan antara garis isohyet

A1, A2, An : Luas wilayah antara garis isohyet A total : Luas wilayah total pos hujan

- 3. Pada penelitan ini perhitungan luas curah hujan menggunakan metode poligon thiessen.
- a. Dengan cara **Metode Segi Empat (Square Method)** membuat petak-petak kotak pada daerah yang akan dihitung luasnya. Pada batas tepi yang luasnya setengah kotak atau lebih akan dibulatkan menjadi satu kotak, sedangkan kotak yang luasnya kurang dari setengah kotak akan dihilangkan atau tidak dihitung. Hal yang perlu diperhatikan adalah pertimbangan keseimbangan. Harus ada penyesuaian antara kotak yang akan dibulatkan dengan yang dihilangkan

4. Ketersediaan Air

Secara umum di Indonesia yang menjadi patokan dalam perencanaan irigasi adalah perencanaan kebutuhan air irgasi untuk tanaman padi. Kebutuhan air tanaman padi untuk varietas padi yang sering dipergunakan di Indonesia adalah rata-rata sebesar 1 liter/detik/hektar, atau ketinggian genangan padi rata-rata sebesar 10 cm. Padi yang terendam air terlalu tinggi tidak baik karena akan menghambat pertumbuhan, tetapi apabila kondisi padi yang sudah tinggi maka apabila genangan kurang dari kebutuhan juga kurang baik. Dalam kondisi batas waktu tertentu padi masih memungkinkan untuk mendapat suplai air kurang dari semestinya dan atau mendapat suplai air berlebihan dari optimum.

5. Analisis Potensi Ketersediaan Air

Potensi air pada suatu tempat pada prinsipnya diperoleh dari besarnya hujan yang jatuh di daerah pengaliran. Namun air hujan yang dapat digunakan pada saat musim hujan hanya sebagian kecil dan sisanya habis mengalir ke laut dan meresap kedalam tanah karena pengelolaan yang belum maksimal.

Dimana untuk mendapatkan Debit Potensi Air yaitu sebagai berikut :

CH x A + Jumlah Perstasiun = Debit Potensi

 $\begin{aligned} Dimana: CH &= Curah \; Hujan \\ A &= Luas \; Areal \end{aligned}$

6. Analisis Kondisi Fisik

Analisis yang dimaksud adalah analisis terhadap kondisi fisik bangunan dan saluran pada suatu jaringan irigasi. Penilaian kondisi fisik sangat menentukan, karena fisik dari bangunan air menjadi syarat utama penilaian, apabila dari segi fisik sudah layak maka kinerja dari aspek lain seperti analisis manajemen pemberian air dapat dilakukan. Ada pun rumus yang digunakan dalam menghitung persentase kondisi fisik pada jaringan irigasi adalah sebagai berikut (*Petunjuk Penilaian Kondisi Jaringan Irigasi*, 1991:6):

KONjar = KONbujar + KONbbsjar + KONsaljar + KONspgJar + KONbpgjar

Keterangan:

KONjar = Kondisi Jaringan (%)

KONbujar = Kondisi Bangunan Utama Jaringan (%)

Konbbsjar = Kondisi Bangunan Bagi dan Sadap Jaringan (%)

KONsaljar = Kondisi Saluran Jaringan (%)

Konspgjar = Kondisi Saluran Pembuang Jaringan (%)

KONbpgjar = Kondisi Bangunan pada saluran pembuang (%)

7. Keseimbangan Air

Untuk mengetahui bagaimana kebutuhan air irigasi dapat dilayani oleh ketersediaan air yang ada berdasarkan ketersediaan dan kebutuhan air.

8. Analisis Kelembagaan dan Sumber Daya Manusia

Mengacu pada Peraturan Menteri Pekerjaan Umum Nomor : 32 / PRT / M / 2007 Kebutuhan Tenaga Pelaksana Operasi & Pemeliharaan adalah sebagai berikut:

- Kepala Ranting/pengamat/UPTD/cabang dinas/korwil: 1 orang + 5 staff per 5.000 -7.500 Ha
- Mantri / Juru pengairan : 1 orang per 750 1.500 Ha
- Petugas Operasi Bendung (POB): 1 orang per bendung, dapat ditambah beberapa pekerja untuk bendung besar
- Petugas Pintu Air (PPA): 1 orang per 3 5 bangunan sadap dan bangunan bagi pada saluran berjarak antara 2 - 3 km atau daerah layanan 150 sd. 500 ha
- Pekerja/pekarya Saluran (PS): 1 orang per 2 -3 km panjang saluran.

9. Analisis AKNOP (Angka Kebutuhan Nyata Operasional dan Pemeliharaan)

AKNOP adalah angka kebutuhan nyata operasi dan pemeliharaan untuk pengelolaan irigasi dari hasil inventarisasi penelusuran kerusakan jaringan irigasi yang ditetapkan melalui musyawarah (Kepmen Kimpraswil No. 529/KPTS/M/2001)

Berdasarkan Peraturan Menteri PU Permen PU. No.32 /PRT/M/2007, tentang Pedoman Operasi dan Pemeliharaan Jaringan Irigasi dinyatakan bahwa setiap usulan kegiatan harus berdasarkan perhitungan Angka kebutuhan Nyata Operasi dan pemeliharaan (AKNOP), dimana pelaksanaan AKNOP merupakan usulan biaya benar-benar nyata yang dibutuhkan pada suatu Daerah Irigasi dikarenakan dalam pelaksanaannya harus melakukan survey ke lapangan langsung dengan mendata asset satu persatu secara detail baik sarana maupun prasarana irigasi. (Permen PUNo.32/PRT/M/2007)

Agar pelaksanaan operasi dan pemeliharaan berjalan dengan optimal maka kita harus memberikan dana untuk pelaksanaan operasi dan pemeliharaan sesuai dengan Angka kebutuhan Nyata Operasi dan Pemeliharaan. Kegiatan operasi dan pemeliharaan irigasi adalah dua hal yang saling terkait. Untuk mensinkronkan kedua dua kegiatan tersebut maka diperlukan suatu program operasi dan pemeliharaan dan harus dibuat suatu kebutuhan biaya nyata yang akan dilaksanakan di lapangan.

Untuk kegiatan OP diperlukan suatu nilai atau angka biaya yang betul- betul nyata yang merupakan hasil penelusuran jaringan irigasi yang dikenal dengan nama Angka Kebutuhan Nyata Operasi dan Pemeliharaan Irigasi (AKNOP).

Penyusunan AKNOP merupakan kegiatan penyusunan biaya kegiatan OP pada suatu jaringan irigasi yang akan menggambarkan secara rinci biaya nyata kebutuhan dari setiap DI untuk melaksanakan OP dilihat dari kondisi bangunan air dan panjang saluran irigasi (kondisi baik, rusak ringan dan rusak sedang) dan ditentukan juga oleh jumlah personil dan peralatan yang digunakan.

C. LOKASI PENELITIAN

Gambar 2 Lokasi Penelitian

IV. ANALISIS & PEMBAHASAN A. GAMBARAN UMUM

Bendung Cikeusik ini masuk wilayah Kecamatan Cidahu Kabupaten Kuningan Jawa Barat, Areal layanan Daerah Irigasi Bendung Cikeusik adalah ± 7.126 Ha pada tahun 2002/2003, telah mengalami alih fungsi dan areal yang ada sekarang seluas 6.899 Ha mencakup 61 Desa dan 7 Kecamatan.

B. KONDISI DAN FUNGSI JARINGAN IRIGASI

1. Kondisi dan Fungsi Bangunan Irigasi Bendung Cikeusik

Tabel 5Kondisi dan Fungsi Bangunan Irigasi
Bendung Cikeusik

				. 0					
					Kondisi		Baik	Rusak	
No	Uraian		Satuan	Baik	Rusak	Rusak	%	%	Ket.
		Volume		Dalk	Ringan	Berat			
	Areal Fungsional	6889							
- 1	Bendung								
	Tetap	1	bh	1,00	0,00	0,00	100,00	0,00	Baik
	Suplesi	3	bh	2,00	1,00	0,00	66,67	33,33	Baik
2	Bangunan Bagi								
	Bagi	2	bh	2,00	1,00	1,00	100,00	100,00	Kurang
	Bagi Sadap	12	bh	5,00	3,00	1,00	41,67	33,33	Sedang
	Sadap	64	bh	6,00	3,00	2,00	9,38	7,81	Kurang
3	Bangunan Pelengkap								
	Talang	8	bh	5,00	2,00	1,00	62,50	37,50	Sedang
	Syphon	1	bh	0,00	1,00	0,00	0,00	100,00	Kurang
	Gorong - gorong	1	bh	1,00	0,00	0,00	100,00	0,00	Baik
	Jembatan	14	bh	8,00	4,00	2,00	57,14	42,86	Sedang
	Terjunan	1	bh	1,00	0,00	0,00	100,00	0,00	Baik
	Tangga Cucian	11	bh	5,00	4,00	2,00	45,45	54,55	Kurang
	Jumlah	118	bh	36	19	9			
	Rata-Rata						62,07	37,22	

Catatan :

Mengacu pada Permen PU No. 32 Tahun 2007 terdapat indikator nilai didalamnya sebagai berikut :

- > Kondisi baik jika tingkat kerusakan <10%, diperlukan pemeliharaan
- Kondisi rusak ringan jika tingkat kerusakan 10% 20%, diperlukan pemeliharaan berkala.
- Kondisi rusak sedang jika tingkat kerusakan 20% 40%, diperlukan perbaikan.
- Kondisi rusak berat jika tingkat kerusakan >40%, diperlukan perbaikan berat atau pergantian.

2. Kondisi dan Fungsi Saluran Irigasi D.I. Cikeusik

Tabel 6Kondisi dan Fungsi Saluran Irigasi
Bendung Cikeusik

		_			_				
	Nama S	aluran	Panjang		Kondisi		Fun	gal	
No.	Primar	Sakundar	(Km)	(Km)	(Km)	Km)	Balk (%)	(%)	Kac
4	Saluran Induk Maneungseung Kepala	-	10,9 5	9,57	0,66	1,12	80,67	19,19	Balk
2	Saluran Induk Maneungseung Sarat		8,05	5,50	0,91	1,75	66,66	99,04	Kurang
9	Saluran Induk Mane ung seung Timur		7,16	4,01	0,75	2,40	\$6,01	43,88	Balk
4	-	Saluran Se kunder Rod	1,74	1,50	-	0,26	65,22	14,77	Balk
	-	Saluran Se kunde r Surakariga	1,74	1,50	-	0,22	67,56	12,64	Se dang
٠	-	Saluran Se kunde r Sumber	1,40	22,0	-	0,65	50,50	60,71	Se dang
7	-	Saluran Se kunde r G rogol	1,54	1,56	-	-	100,00	-	Se dang
•	-	Saluran Se kunde r Sia gedo g	1,55	1,51	90,0	-	97,42	2,54	Se dang
	-	Saluran Se kunde r Pia yang an	9,00	1,49	-	1,50	49,55	50,67	Sedang
10	-	Saluran Se kunde r Ja fise eng	2,85	1,60	0,97	0,60	59,15	40,85	Se dang
**	-	Saluran Se kunde r Genggo ng	1,23	0,89	-	0,40	67,45	92,55	Se dang
12	-	Saluran Se kunde r Pa bedi lan	7,60	2,66	1,00	1,96	48,08	51,91	Se dang
19	-	Saluran Se kunde r Tersana	1,1 0	0,91	0,66	-	25,45	74,15	Se dang
14	-	Saluran Se kunde r Ke bon û g urg	1,04	0,21	0,66	-	10,00	'	Se dang
15	-	Saluran Se kunde r Geranalang gar	1,78	1,55	22,0	-	86,55	19,67	Sedang
16	-	Saluran Se kunde r Losari	12,67	9,52	-	9,95	79,56		Se dang
17	-	Saluran Se kunde r Tawangsari	4,50	2,00	-	0,65	85,64		Se dang
10	- Juniah	Saluran Se kunde r Panggang	70.90	0,50	6.90	0,90	62,50 1,190,00		Se dang
-	Rata - Rara			2,66			66,11	99,69	i

Sumber: Dinas UPT PSDA Cikeusik Kabupaten Cirebon

Catatan :

Mengacu pada Permen PU No. 32 Tahun 2007 terdapat indikator nilai didalamnya sebagai berikut:

- > Kondisi baik jika tingkat kerusakan <10%, diperlukan pemeliharaan rutin.
- Kondisi rusak ringan jika tingkat kerusakan 10% 20%, diperlukan pemeliharaan berkala.
- Kondisi rusak sedang jika tingkat kerusakan 20% 40%, diperlukan perbaikan.
- Kondisi rusak berat jika tingkat kerusakan >40%, diperlukan perbaikan berat atau pergantian.

Dari hasil analisis diatas, dapat diketahui bahwa kondisi banguan dan saluran pada Daerah Irigasi Bendung Cikeusik sedikit mengalami kerusakan, kerusakan untuk kondisi bangunan mencapai rata – rata 33,89%. Dan untuk Kondisi saluran irigasi mencapai rata – rata 0,87%. Yang berdampak pada menurunya fungsi jaringan irigasi sehingga pelayanan air pada Daerah Irigasi Cikeusik menjadi kurang optimal. Perlu adanya perbaikan atau pergantian alat-alat yang ruksak, sedangkan untuk kondisi saluran irigasi perlu adanya pemeliharaan rutin dan berkala.

C. SUMBER DAYA MANUSIA Tabel 6

Kondisi Tenaga Pengelola Lapangan D.I. Cikeusik

		Mone	Salurn	Dorina									ERSON									
	10	Nella	(VIIII)	Panjang	J	n Penga	GN		POB			PPA			PPS			Juniah		Ma	Kuang	Ket
		Piner	Sekonder	(Km)	Buth	Ata	Kuang	Build	Hà	Kuang	Bátá	Alda	Kuang	Báth	kla	Kuang	Báidh	Hà	Kuang	1	1	
	1	Saluanhdik		25,56	6	6	1	4	4	0	33	3	3	1	6	0	43	19	24	44,19	55,81	
Ī			Saluan Sekunder	4,74	6	6	1	30	30	0	4	36	5	18	10	8	9	46	13	77,97	248	
		Junah		71,30	6	6	0	5	4	1	74	39	3	18	16	2	102	65	37			
		Rata-rata																		61,08	38,92	

Sumber : Dinas UPT PSDA Cikeusik Kabupaten Cirebon

Catatan:

Menurut Permen Pu No. 32/PRT/M/2007

- ➤ 1 Juru Pengairan Menjangkau 750-1500 Ha
- > 1 Petugas Operasional Bendung (POB) Menjangkau 1 bendung
- 1 Petugas Pintu Air (PPA) Menjangkau 2-3 Bangunan Bagi Bangunan Bagi Sadap dan Bangunan Bagi Sadap yang berjarak 2-3 Km atau daerah Javanan 150-500Ha
- ➤ 1 Petugas Pemeliharaan Saluran (PPS) Menjangkau 2-3 Km Panjang Saluran

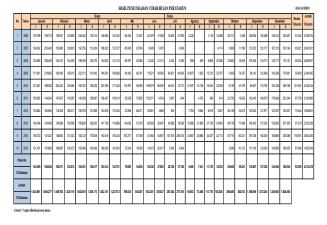
Dari hasil analisis diatas diketahui bahwa tenaga pengelola pada Daerah Irigasi Bendung Cikeusik tersedia 65 orang, sedangkan yang dibutuhkan adalah 102 orang dengan prosentase kekurangan mencapai 38,92% sehingga pelayanan terhadap kondisi saluran kurang terpenuhi dan berdampak pada kondisi jaringan yang kurang terawat.

D. ANALISA HIDROLOGI

1. Data Curah Hujan

Tabel 7 Sta. Ciawigebang 57,84 km²

							Bu	lan											81	lan						Rerata Tahunan
No	Tahun	Jan	uari	Feb	ruari	Ma	net	Ap	d	1	bi .	Ji	ni	Ji	á	Agu	stus	Septe	mber	Okto	ber	Nope	mber	Desc	mber	
		1	-	-	-	-	-	-	1	1	-	-	-	-	-	1	-	-	-	1	1	-	-	-	-	
1	2001	193	155	100	159	176	154	188	112	0	0	43	116	65	e	0	0	10	49	0	0	151	277	195	1%	98,97
2	2002	198	381	184	159	107	105	248	114	100	7	12	0	0	1	0	0	0	0	0	0	119	324	330	85	104,53
3	2013	264	272	312	213	253	317	186	122	103	38	8	0	46	9	0	0	21	9	0	27	119	309	137	178	110,11
4	2014	96	178	Bl	125	161	105	186	121	36	16	18	117	308	57	93	0	ą	30	35	96	119	213	117	132	96,89
5	2005	270	126	173	163	126	154	186	129	85	98	270	0	0	0	0	0	0	0	0	0	119	125	195	131	97,31
6	2006	198	121	184	95	142	154	130	105	0	0	0	15	0	0	0	46	0	0	146	18	145	151	119	302	85,20
7	2017	198	161	161	238	277	154	186	202	21	147	116	31	0		0	0	0	0	55	6	85	213	195	187	111,74
8	2008	198	198	184	159	176	154	186	129	0	0	0	0	0	0	0	0	0	0	100	50	124	157	215	230	93,82
9	2009	198	144	168	171	154	199	231	129	130	97	76	6	0	0	0	0	0	0	0	152	99	311	195	39	111,59
10	2000	165	155	343	115	190	154	136	129	123	25	0	0	0		0	0	0	0	0	34	119	356	204	163	96,17
Rata 12 Bu		197,60	187,67	184,14	159,29	176,19	154,00	186,43	129,33	63,55	42,71	54,25	34,40	21,90	15,00	930	460	7,80	8,80	32,60	44,20	118,90	212,50	185,30	187,28	


E. PERHITUNGAN CURAH HUJAN

Dimana : = CH x Luas DAS Contoh 193 x 57,84 = 11.163

Tabel 8

										ST		a cuka gebang	H HWA Luas 57	-												DALAS	(RBE)
							Bulan													Bulan						Renta	Junish
No	Tahun	Jan	uari	Feb	nari	k	ret	Ą	ni	-	bi .	J	ni	J	í	Agu	stus	Septe	nber	Oc	iber	Nope	mber	Dese	nber	Tahunan	Tahunan
		1	\perp	\perp	\perp	\perp	1	\perp	\perp	-	\perp	\pm	-	\perp	1	\perp	1	1	1	\perp	1	1	\perp	1	1		
1	2001	1116	8.850	582	990	11.80	8907	10374	6/8			2.68	6709	3360	3,875	-		58	284	-		8794	16/022	10.700	10.180	5753	138.062
2	2002	11.09	2367	11.63	990	6160	6073	14344	654	888	415	84			415	-				-		6883	18740	18.509	4966	6076	145318
3	2003	15270	15752	19.945	1230	14.64	11973	10.758	7056	5958	2398	Æ		260	189			128	21		150	6883	6305	1904	11257	638	15286
4	2004	5.93	1126	1517	1230	132	6013	10.758	6,999	2802	95	184	6167	630	3207	5379		278	1735	138	5553	6883	12320	6367	168	588	134.536
5	2005	15627	138	10.006	92%	128	8907	10.758	7.60	480	568	15.60				-				-		6883	7230	11.700	1517	5827	135.056
6	2006	11.09	6,000	11.63	5379	128	8907	159	6073				161				260			145	1941	8367	8794	6883	17.48	495	1195/8
7	2007	11.09	932	932	13.766	16.02	8907	10.758	11.684	1215	8502	678	176			-				3.80	3760	4966	12330	11.710	10316	648	155.103
8	2008	11.09	10.855	11.63	9,197	11.30	8907	10.758	7.60											5342	280	1,172	9081	12,66	13316	5.63	130.157
9	2009	11.09	139	9.707	9.98	190	11.500	13361	7.60	159	560	43%	3760								1790	5148	11.626	11.700	16716	6.63	154.872
10	2910	958	8.850	14.85	682	11.90	8907	7.866	7.60	Ħ	1388										1967	6383	20.50	11.799	9.03	5562	133.465
	da-cata Bulanan	11.69	10.855	10548	9352	10.189	8,907	10.776	1,03	16%	2.670	3.138	1990	1297	868	538	36	451	509	1.886	2557	6877	12.297	10.712	10,331		
_	inlah Bulanan	11429	1858	116.88	98.523	101.886	901	107.7%	14739	3.757	2488	31,7%	1997	1267	ın	5379	260	450	5,000	115	25%	6772	12298	117.129	1836		

Tabel 9

Hasil ini di dapat dari:

CH x Luasan + Jumlah Hasil Minggu pertama Maksudnya Nilai atau Debit Potensi Air ini di dapat dari hasil perkalian curah hujan perstasiun di kali luasan per stasiun ditambah hasil dari per satu minggu perstasiun dan seterusnya.

Tabel 10

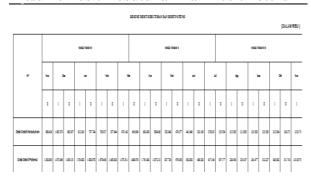
												UUKAH	JUAN													DILU	(1898)
									STAC	IKEUSIK	Di Kali Lı	uas DI Ci	keusik d	itambah	Hasil Ju	ımlah											
							But	20												Bulan						Bassia	Jun
No	Tahun	Jan		Feb		Wa		Ą		-	bi .	Je		à		Ago		Septe		Old		Nop	ember	Desi		Tahinan	Tahur
_	-	- 1	-	_	-	-	-	_	-	_	-	1	1	-	1	-	-	-	-	_	-	-	- 1	1	1		
1	2006	189.769	212689	151.361	143825	258.462	199365	159.064	137.133	81,300	44.517	77.049	44,888	29803	44363	15.196	12970	14086	28.056	68591	14.818	119906	168.455	148.583	175,477	104.202	2500
2	2007	162.022	268370	166.839	141.791	205.725	125.179	201.293	145.EET	97.578	33,755	22.815	18540	12970	17069	12970	12970	12970	17.144	16009	34.756	125494	165.687	180.185	163.125	97991	235
3	2008	165.860	229.460	167,443	157 020	212:379	138,440	147802	154.00	101.757	39.025	26.310	34,284	22.174	18365	13368	13.239	19840	38336	36.835	31.425	120516	WIN.	196741	187,117	99.174	2380
4	2009	184791	232965	196370	117985	235.121	144312	197561	119.93	61.130	81,761	12.491	53.032	77391	53,594	33,777	14595	25.185	45,737	18426	87307	102112	135,776	116,256	188532	106570	255
5	2010	226.421	181,333	213.403	139554	195.572	142.85	220.536	130.410	127,367	71.479	12.549	81.000	52384	28.701	34,477	28:098	23324	36.179	22.109	60448	107.877	128762	133,308	179.128	114471	2347
6	2011	208.805	157,254	160608	131557	198.178	151.857	179357	122.284	48.508	8335	118.341	17.888	16577	13814	12970	17349	13308	13.584	35.765	32925	145.413	198040	183.776	235.3/14	100,760	2.418
7	2012	116.654	163952	131,296	181.187	172,763	144958	153.515	128.314	35.528	99.181	220	16.855	13873	12970	20.753	22534	21.589	16527	69.118	47.644	146.496	1450	138.357	165.797	92,414	2217
8	2013	177216	167.428	147,669	162565	171.560	139.793	154719	122.556	107.606	110340	82.929	39.917	58629	31.236	29306	34530	40.098	47912	62.146	84.915	156373	140,272	142.653	220,279	110.189	2644
9	2014	178.693	159992	161,570	144.293	195.090	185.478	165306	153.304	180,247	80.676	61.025	67.927	114.86	263.484	37.537	33550	57.377	55.583	80585	73.291	169.988	176264	119.638	342.258	131.901	3360
10	2015	144.161	210856	182857	139043	168,459	155.876	181.000	138.373	85.905	31.488	27.043	33.867	17975	16379	12970	12970	12970	12370	16568	54382	124386	146.023	195.858	190025	945'8	2270
Ra	bab																										
128	lubran	175.439	199.398	167,941	145982	197.351	148987	175.184	135,721	92,773	67.506	61.200	48.833	*6/16	50.718	22,400	29311	24348	31.223	42508	91.171	131.857	190296	147.507	195015		
à	mish	1754390	1985/78	1678.46	LEND	1573511	Lange	1761842	1,87,23	1075	cus	612.012	41.01	47364	90,077	28.54	36316	DLAT	30.17	4630	51.714	130570	1510%5	1.453%	1.991.151		
10	Balana																										
de	1 Sanja	dhistoy k	ma jatum																								

Sedangkan hasil dari perhitungan tabel 4.22 itu sebagai berikut :

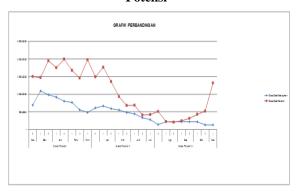
CH.Sta.Cikeusik x Luas DI.Cikeusik x 10.000

1. Debit Kebutuhan di Sawah

Mula-mula dihitung kebutuhan air selama ½ bulanan berdasarkan luas areal tanam dengan cara luas areal tanam dikalikan dengan koefisien masing-masing jenis tanam selanjutnya untuk memperoleh kebutuhan air pada pintu tersier angka itu dikalikan dengan faktor kehilangan di saluran tersier yaitu 1,25. Kemudian untuk mendapatkan angka kebutuhan air pada pintu sekunder, hasil perhitungan diatas dikalikan lagi dengan faktor kehilangan di saluran sekunder yaitu 1,10. Akhirnya untuk mendapatkan angka kebutuhan air di pintu pengambilan angka itu dikalikan dengan faktor kehilangan di saluran primer sebesar 1,05.


Kebutuhan Air Tersier = KAS x 1.25
 Kebutuhan Air Sekunder = KAS x 1.10
 Kebutuhan Air Primer = KAS x 1.05

a. Perhitungan Kebutuhan Air di Sawah Modif


Tabel 11 Kebutuhan Air Di Sawah DI CIkeusik

Tabel 12 Resume Debit Kebutuhan Dan Debit Potensi

Tabel 13 Grafik Perbandingan Debit Kebutuhan Dan Debit Potensi

F. ANALISIS ANGKA KEBUTUHAN NYATA OPERASIONAL DAN PEMELIHARAAN BENDUNG CIKEUSI

Tabel 14 Biaya Operasional dan Pemeliharaan Bendung Cikeusik

No	Tahun Anggaran	Biaya Operasi (Rp)	Biaya Pemeliharaan (Rp)	Jumlah Biaya O&P (Rp)	Biaya Rehabilisasi (Rp)	Total Biaya (Rp)
1	2	3	4	5=3+4	6	7=5+6
1	2010	450.000.000	450.000.000	900.000.000	1.125.000.000	2.025.000.000
2	2011	600.000.000	600.000.000	1.200.000.000	2.545.000.000	3.745.000.000
3	2012	750.000.000	750.000.000	1.500.000.000	1.750.000.000	3.250.000.000

Sumber : UPT PSDA Cikeusik Kabupaten Cirebon

Tabel 15 Grafik Perbandingan Biaya Operasional dan Pemeliharaan Bendung Cikeusik

Dari data diatas dapat diketahui bahwa Biaya Operasional dan Pemeliharaan pada Bendung Cikeusik dari tahun 2010 sampai dengan tahun 2012 mengalami naik turun biaya, sehingga dikatakan mengalami ketidakstabilan.

V. KESIMPULAN DAN SARAN A. KESIMPULAN

Dari hasil analisis dan pembahasan, maka dapat diambil beberapa simpulan yaitu :

- Dari hasil analisis diatas, dapat diketahui bahwa kondisi banguan dan saluran pada Daerah Irigasi Bendung Cikeusik sedikit mengalami kerusakan, kerusakan untuk kondisi bangunan mencapai rata – rata 33,89%. Dan untuk Kondisi saluran irigasi mencapai rata – rata 0,87%.
- 2. Dari hasil analisis diatas diketahui bahwa tenaga pengelola pada Daerah Irigasi Bendung Cikeusik tersedia 65 orang, sedangkan yang dibutuhkan adalah 102 orang dengan prosentase kekurangan mencapai 38,92%
- **3.** Hasil analisis pola tanam pada D.I Bendung Cikeusik yaitu menggunakan padi-palawija

- debit yang tersedia pada D.I Bendung Cikeusik sudah terpenuhi.
- 4. Dari data diatas dapat diketahui bahwa Biaya Operasional dan Pemeliharaan pada Bendung Cikeusik dari tahun 2010 sampai dengan tahun 2012 mengalami naik turun biaya, sehingga dikatakan mengalami ketidakstabilan.

B. SARAN

Berdasarkan dari analisis yang dilakukan ada beberapa saran yang harus dilakukan, yaitu :

- 1. Berdampak pada menurunya fungsi jaringan irigasi sehingga pelayanan air pada Daerah Irigasi Cikeusik menjadi kurang optimal. Perlu adanya perbaikan atau pergantian alat-alat yang ruksak, sedangkan untuk kondisi saluran irigasi perlu adanya pemeliharaan rutin dan berkala.
- Pada Bendungan Cikeusik kekurangan tenaga pengelola lapangan,sehingga pelayanan terhadap kondisi saluran kurang terpenuhi dan berdampak pada kondisi jaringan yang kurang terawat.
- 3. Tidak Perlu adanya perubahan pola tata tanam pada daerah irigasi Cikeusik karna debit kebutuhan sudah terpenuhi.
- 4. Biaya Operasional dan Pemeliharaan pada Bendung Cikeusik sebaiknya ditingkatkan, agar Kinerja Bendung Cikeusik optimal dan berfungsi dengan baik.

DAFTAR PUSTAKA

A. BUKU – BUKU

Aditia Pribadi, Dehan, "Analisis Sistem Kinerja Daerah Irigasi Pada Daerah Irigasi Sungai Cipager Kabupaten Cirebon", (Skripsi)Universitas Swadaya Gunung Jati Cirebon, 2014

Budhiono,R.M,"Kajian Sistem Jaringan Irigasi Rentang pada Saluran Induk Utara Kabupaten Indramayu",(Skripsi) Universitas Swadaya Gunung Jati Cirebon,2011.

Joni Alfian, Ade,"Evaluasi Operasi dan Pemeliharaan Bendung Cangkuang Kecamatan Babakan Kabupaten Cirebon", (Skripsi) Universitas Swadaya Gunung Jati Cirebon, 2010.

- Mangkunegara, ap, "Evaluasi Kinerja SDM", Jakarta, 2000. Mawardi, E dan Memed M, "Desain Hidraulik Bendung Tetap", Bandung: Alfabeta, 2002.
- Murtiningrum, "Analisis Keseragaman Pemberian Air", 2007. "Pedoman Penulisan Skripsi", Universitas Swadaya Gunung Jati, Cirebon, 2015
- Purwanto, "Metodologi Penelitian Kuantitatif", Jakarta: Gaung Persada Press, 2006.
- Pusposutardji, "Dampak Lingkungan Terhadap Irigasi", 1985. Sidharta, "Irigasi dan Bangunan Air", 1997. Sudjarwadi"Pengantar Teknik Irigasi", Jakarta, 1979.
- Sumaryanto cs, "Evaluasi Operasi dan Pemeliharaan Jaringan Irigasi dan Upaya Perbaikannya", Pusat Analisis Sosial Ekonomi dan Kebijakan Pertanian Badan Penelitian dan Pengembangan Pertanian Departemen Pertanian, 2006.
- Suyono, Ir, Kensaku Takeda, "Hidrologi untuk Pengairan", PT. Pradnya Paramita, Jakarta, 1976.
- Syarif " Analisis Dampak O & P pasa Objek Irigasi", jakarta, 2002.
- Wahyudi , " **Definisi Irigasi**", Institut Pertanian Bogor, 1987
- Witmore, John, "Coaching for Performance", Universitas of California, 1997.

B. LAIN-LAIN

- Dinas UPT PSDA Cikeusik
- BBWS Cimanuk-Cisanggarung
- Dinas Irigasi Kabupaten Cirebon

Analisis Kinerja Sistem Daerah Irigasi Bendung Cikeusik Kabupaten Kuningan