JURNAL KONSTRUKSI

ISSN: 2085-8744

Analisis Perencanaan Gedung Aula Dan Rektorat Universitas Swadaya Gunung Jati Cirebon Menggunakan Struktur Beton SNI 2013

Yusuf*, H. Fathur Rohman ST.,MT. **

*) Mahasiswa Jurusan Teknik Sipil Fakultas Teknik Universitas Swadaya Gunung Jati Cirebon

**) Staf Pengajar pada Jurusan Teknik Sipil Fakultas Teknik Universitas Swadaya Gunung Jati Cirebon

ABSTRAK

Perkembangan ilmu pengetahuan dan teknologi harus disertai dengan pendidikan formal yang tinggi dan prasarana yang memadai. Maka dari itu didirikan sebuah perguruan tinggi yang dapat memberikan pengetahuan secara luas dan global. Karena itu gedung ini harus memenuhi kriteria keselamatan dan layanan yang prima untuk itu harus ada desain yang meyakinkan. Atas dasar kriteria kesalamatan dan layanan prima maka proses perencanaan pembebanan harus sesuai dengan SNI 1727-2013 serta perencanaan struktur gedung ini harus mengacu dengan SNI - 2847- 2013 beton bertulang, yang merupakan peratuaran terbaru.

Berdasarkan data yang diperoleh dari Universitas Swadaya Gunung Jati Cirebon penulis meredesain sebuah aula dengan menggunakan material struktur beton yang terdiri dari tiga lantai. Analisis struktur ini menggunakan software SAP, material beton yang digunakan untuk balok dan kolom serta pelat lantai sedangkan struktur atap menggunakan baja.P rofil yang struktur yang di pakai untuk melayani beban sesuai dengan fungsi bangunan yaitu kolom 45x 45, balok 35 x 45,plat 13 cm dan atap baja 21 65 x 65.

Kata Kunci: Analis, Momen, Beban, Portal, Beton, Kolom, Balok, Plat

ABSTRACT

Developments in science and technology should be accompanied by formal education and adequate infrastructure. Thus was established a college that can provide knowledge widely and globally. Therefore this building must meet the safety and excellent service for that there must be a convincing design. On the basis of the criteria kesalamatan and excellent service then loading the planning process should be in accordance with ISO 1727-2013 as well as the structural design of the building should refer to the SNI - 2847- 2013 of reinforced concrete, which is the latest regulation

Based on data obtained from the University of Governmental Gunung Jati Cirebon author meredesain a hall by using material concrete structure consisting of three floors. This structural analysis using SAP software, concrete materials used for beams and columns and floor slabs while the roof structure using baja. P Rofil the structure in use to serve the load in accordance with the function of the building is $45 \, \mathrm{cm} \, x \, 45 \, \mathrm{cm}$ columns, beams $35 \, \mathrm{cm} \, x \, 45 \, \mathrm{cm}$, plate 13 steel roof $21 \, 65 \, x \, 65$.

Keywords : Analysis, Moment, Load, Portal, Concrete, Coloumn, Beam, Plat

1. PENDAHULUAN

A. LATAR BELAKANG MASALAH

Perkembangan ilmu pengetahuan dan teknologi harus disertai dengan pendidikan formal yang tinggi dan prasarana yang memadai. Maka dari itu didirikan sebuah perguruan tinggi yang dapat memberikan pengetahuan secara luas dan global. Sementara itu adanya peningkatan kebutuhan yang harus dilayani terkadang bangunan lama tidak mampu lagi untuk menampung berbagai aktifitas yang harus dilakukan. Untuk itu perlu adanya upaya peningkatan daya guna bangunan baik itu berupa renovasi, penambahan gedung baru ataupun pembangunan gedung baru.

Kapasitas gedung Universitas yang sekarang ada tidak memenuhi atau mampu menampung kegiatan akademik dan non akademik sehingga membutuhkan pembangunan gedung baru. Perencanaan gedung ini juga dimaksudkan untuk bisa digunakan untuk penyelenggarakan wisuda, karena itu gedung ini harus memenuhi kriteria keselamatan dan layanan yang prima untuk harus ada desain yang itu meyakinkan.

Atas dasar kriteria kesalamatan dan layanan prima maka proses perencanaan pembebanan harus sesuai dengan SNI 1727 - 2013 serta perencanaan struktur gedung ini harus mengacu dengan SNI - 2847- 2013 beton bertulang, yang merupakan peratuaran terbaru yang disesuaikan dengan perkembangan teknologi material terkini dengan mengacu pada AISC, selain itu dalam perhitungan rekayasa gempa juga harus mengacu pada SNI 1726 - 2012.

B. FOKUS PERMASALAHAN

Pada penelitian ini difokuskan mendesain dan menganalisis pembangunan gedung Aula dan Rektorat Universitas Swadaya Gunung Jati Cirebon yang terletak di Jl. Pemuda Kota Cirebon.

C. BATASAN MASALAH

skripsi dengan Dalam judul "ANALISIS PERENCANAAN GEDUNG AULA DAN REKTORAT UNIVERSITAS SWADAYA GUNUNG JATI CIREBON **MENGGUNAKAN DENGAN** STRUKTUR BETON SNI 2013" akan menjelaskan permasalahan yang ada pada daerah kajian, sehingga dicarikan solusi pada permasalahan tersebut. Maka dari itu perlu adanya batasan penulis ang bertujuan untuk penyusunan Skrips ısan masalah yang di angkat sebagai berikut

- 1. Hanya merencanakan dan mendesign konstruksi gedung Universitas Gunung Jati sesuai dengan SNI 2847 2013 Beton bertulang dan SNI 1727 2013 pembebanan.
- 2. Merencanakan struktur hanya areal pembangunan aula.
- 3. Tidak merencanakan instalasi listrik
- 4. Mengvisualisasikan melalui penggambaran 2D.
- 5. Tidak menghitung Rencana Anggaran Biaya (RAB).
- 6. Menganalisi struktur gedung.
- 7. Tidak menghitung gempa

D. MAKSUD DAN TUJUAN

1. Maksud

- a. Untuk meredesain gedung Aula dan Rektorat UNSWAGATI dengan menggunakan struktur beton
- b. Untuk menetahui detail dimensi , plat, balok, kolom dan pondasi yang akan digunakan dalam perencanaan pembangunan aula dan rektorat UNSWAGATI.
- c. Memberi gambaran pada gedung UNSWAGATI yang baru setelah dilakukan analisis.

2. Tujuan

 Menganalisis pembangunan Gedung Universitas Gunung Jati Cirebon yang terletak di Jl. Pemuda Kota Cirebon. b. Memberi gambaran pada area pembangunan.

2. KAJIAN PUSTAKA DAN LANDASAN TEORI

A. KAJIAN PUSTAKA

1. Perencanaan Sejenis

Penelitian yang pernah dilakukan sebelumnya dengan studi kasus yang memiliki permasalahan analisis dan pembahasan dengan memiliki kemiripan yang nantinya bisa menjadi bahan sebagai referensi dalam penyusunan yang akan dilakukan, dibawah ini ada bebrapa analisis kajian yang pernah dilakukan sebelumnya, antara lain adalah sebagai berikut:

Pertama Perencanaan Yang dilakukan oleh Harviani Cahya Ruslina (2011) melakukan Perencanaan Pembangunan Struktur Gedung. Judul penelitian yaitu Pembangunan Asrama SMK BHAKTI HUSADA Kuningan. Permasalahan yang dihadapi berupa kapasitas gedung yang sudah ada tidak mencukupi untuk menampung peserta didik.

Kedua Perencanaan yang dilakukan oleh Azis Sholihin (2015) melakukan perencanaan berupa perencanaan Insprastruktur penunjang di wilayah Padang Golp Ciperna. Judul penelitian yaitu Analisis Pengembangan Daerah Wisata di Wilavah **Padang** Golp Ciperna Kabupaten Cirebon. Permasalahan yang dihadapi kurangnya **Fasilitas** untuk penunjang serta tidak adanya insfrastruktur penunjang berupa hotel di wilayah wisata tersebut .Sehingga harus secepatnya permasalahan itu ditangani salah satunya adalah pembangunan Hotel.

Berdasarkan hasil kajian penulis dari kedua perencanaan di atas mengenai perencanaan suatu *struktur gedung*. Penulis menilai bahwa yang paling mendekati dan mempunyai persamaan dalam hal perencanaan *struktur* dengan perencanaan yang Penulis lakukan adalah perencanaan yang pertama.

Kinerja sebagai hasil – hasil fungsi pekerjaan/kegiatan seseorang atau kelompok dalam suatu organisasi yang di pengaruhi oleh berbagai faktor untuk mencapai tujuan organisasi dalam periode waktu tertentu (Tika, 2006).

Sistemmerupakan kumpulan dari beberapa bagian yang memiliki keterkaitan dan saling bekerja sama serta membentuk suatu kesatuan untuk mencapai suatu tujuan dari sistem tersebut. Maksud dari suatu sistem adalah untuk

B. LANDASAN TEORI

1. Bangunan Gedung

Berdasarkan Undang-Undang Republik Indonesia No. 28 tahun 2002 tentang bangunan gedung. Bangunan gedung adalah wujud fisik hasil pekerjaan konstruksi yang menyatu dengan tempat kedudukannya, sebagian atau seluruhnya berada di atas atau di dalam tanah yang berfungsi sebagai tempat manusia melakukan kegiatan, baik untuk hunian atau tempat tinggal, kegiatan keagamaan, kegiatan usaha, kegiatan sosial budaya, maupun kegiatan khusus. Terdapat 3 pasal pengaturan bangunan gedung dengan tujuan untuk:

- a. Mewujudkan bangunan gedung yang fungsional dan sesuai dengan tata bangunan gedung yang serasi dan selaras dengan lingkungan.
- b. Mewujudkan tertib penyelenggaraan bangunan gedung yang menjamin keandalan teknis bangunan gedung dari segi keselamatan, kesehatan, kenyamanan, dan kemudahan.
- c. Mewujudkan kepastian hukum dalam penyelenggaraan bangunan gedung.

Tujuh fungsi bangunan gedung berdasarkan pasal 5, tepat pada ayat 4 diantaranya adalah mengenai pasar dan jajaranya. Menyatakan bahwa bangunan gedung dengan fungsi usaha sebagaimana dimaksud dalam ayat 1 meliputi bangunan gedung untuk perkantoran, perdagangan, perindustrian, wisata dan rekreasi, terminal, dan penyimpanan.

2. Dasar Perencanaan

a. Pembebanan

Tujuan utama dari rancang bangun struktur adalah untuk menyediakan ruang agar dapat digunakan untuk berbagai macam fungsi, aktifitas atau keperluan sesuai (SNI - 1727-2013).

- 1) Struktur bangunan gedung (*building*) yang digunakan untuk tempat hunian atau beraktifitas.
- 2) Struktur jembatan (*bridge*) atau terowongan (*tunnel*) yang digunakan untuk menghubungkan suatu tempat dengan tempat lainnya.
- 3) Struktur bendungan, yang digunakan untuk penampungan dan pengelolaan/pemanfaatan air, dan masih banyak lagi bentuk struktur.

b. Beban Mati

Beban mati adalah berat dari semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaian-penyelesaian, mesin-mesin serta peralatan tetap yang merupakan bagian yang tak terpisahkan dari gedung itu.

1) Bahan Bangunan

Tabel 2.1 Berat Sendiri Bahan Bangunan

No.	Material	Berat	Keterangan
1.	Baja	7850kg/m ³	
2.	Batu alam	2600kg/m ³	
3.	Batu belah, batu bulat, batu gunung	1500 kg/m ³	Berat tumpuk
4.	Batu karang	700 kg/m ³	Berat tumpuk
5.	Batu pecah	1450 kg/m ³	
6.	Batu tuang	7250kg/m ³	
7.	Beton	2200 kg/m ³	
8.	Batu bertulang	2400 kg/m ³	
9.	Kayu	1000 kg/m ³	Kelas 1
10.	Krikil, koral	1650 kg/m ³	Kering udara sampai lembab, tanpa diayak
11.	Pasangan batu merah	1700 kg/m ³	
12.	Pasangan atu belah, batu bulat, batu gunung	2200 kg/m ³	
13.	Pasangan batu cetak	2200 kg/m ³	
14.	Pasangan batu karang	1450 kg/m ³	
15.	Pasir	1600 kg/m ³	Kering udara sampai lembab
16.	Pasir	1800 kg/m ³	Jenuh air
17.	Pasir kerikil, koral	1850 kg/m ³	Kering udara sampai

Sumber : Pedoman Perencanaan Pembebanan untuk Rumah dan Gedung

2). Komponen Gedung

Tabel 2.2 Berat Sendiri Komponen Gedung

No	Material	Berat	
NO		Berat	Keterangan
	Adukan, per cm tebal :		
1.	Dari semen	21 kg/m ²	
	 Dari kapur, semen 	17 kg/m ²	
	merah/tras		
2.	Aspal, per cm tebal :	14 kg/m ²	
	Dinding pasangan batako	450 kg/m ²	
3.	 Satu batu 	250 kg/m ²	
	Setengah batu	250 kg/iii	
	Dinding pasangan batako :		
	Berlubang :		
	Tebal dinding 20 cm (HB 20)	200 kg/m ²	
4.	Tebal dinding 10 cm (HB		
	10)	120 kg/m ²	
	Tanpa lubang :		
	Tebal dinding 15 cm	300 kg/m ²	
	Teal dinding 10 cm	200 kg/m ²	
	Langit langit 9 dinding		Tamasasili
	Langit-langit & dinding, terdiri :		Termasuk
5.			rusuk-rusuk,
	Semen asbes (eternit), Table 1 as 1 as 4 as 2.	441/2	tanpa
	Tebal maks 4 mm	11 kg/m ²	penggantung
			Tanpa langit- langit,
	Lantai kayu sederhana		bentang maks
6.	dengan balok kayu	40 kg/m ²	5 m, beban
			hidup maks
			200 kg/m ²
			Bentang maks
_	Penggantung langit-langit		5 m, jarak
7.	(kayu)	7 kg/m²	s.k.s min 0,80
			m
			Dengan reng
	Bt	50 to 1/2	dan
8.	Penutup atap genteng	50 kg/m ²	usuk/kaso per m² bidang
			atap
9.	Penutup atap sirap	40 kg/m ²	Dengan reng dan
J.	r cridiap atap sirap	40 kg/m	usuk/kaso
46	Penutup atap seng	401.7.2	T
10.	gelombag (BJLS-25)	10 kg/m²	Tanpa usuk
			Ubin semen
	Penutup lantai ubin, 7 cm		portland,
11.	tebal	24 kg/m ²	teraso dan
	1234.		beton, tanpa
			adukan
12.	Semen asbes gelombang	11 kg/m²	

Sumber : Pedoman Pembebanan untuk Rumah dan Gedung

a. . Beban Hidup

Beban hidup adalah suatu beban yang terjadi akibat penghunian / penggunaan suatu gedung dan kedalamannya termasuk beban-beban pada lantai yang berasal dari barang yang dapat berpindah, mesin-mesin serta peralatan yang merupakan bagian gedung yang tidak terpisahkan dari gedung dan dapat diganti selama masa hidup dari gedung, sehingga mengakibatkan perubahan dalam pembebanan lantai dan atap tersebut 3). Beban Hidup Pada Lantai Gedung

Tabel 2.3 Beban Hidup Pada Lantai Gedung

No	Hunian	Berat	Keterangan
1.	Gedung perkantoran - Ruang kantor - Koridor di atas lantai pertama	240kg/m ²	
2.	Ruang Pertemuan Lobi Panggung pertemuan Lantai podium	479 kg/m²	Kursi tetap dan tidak sama saja
3.	Ruang makan dan Resoran	479 kg/m ²	
4.	Ruang olahraga	359 kg/m ²	Tempat bowling, kolam renang
5.	Ruang dansa	479 kg/m ²	
6.	Lantai dan balkon dalam dari ruang pertemuan	479 kg/m²	Masjid, gereja, ruang pagelaran/rapat, bioskop dengan tempat duduk tetap
7.	Rumah sakit	383 kg/m ²	Koridor di atas lantai pertama
8.	Tangga, dan jalan keluar	479 kg/m ²	Tangga perkantoran
9.	Lantai Tangga,untuk rumah tinggal	192 kg/m ²	
10.	Ruang perpustakaan	287 kg/m ²	
11.	Toko Eceran Grosir	479 600	Minimum
12.	Hotel	250 kg/m ²	
13.	Sekolah Ruang kelas Di atas lantai pertama	192 kg/m² 383 kg/m²	Minimum

Sumber: SNI - 1727- 2013 Beban Minimum bangunan gedung

b. Kombinasi Pembebanan Pada Struktur Portal

Di Indonesia, pada umumnya umur rencana dari struktur bangunan rata-rata adalah 50 tahun. Oleh karena itu selama umur rencananya, sruktur bangunan harus mampu untuk menerima atau memikul berbagai macam kombinasi pembebanan (load combination) yang mungkin terjadi. Beban-beban yang bekerja pada struktur bangunan, dapat berupa kombinasi dari beberapa kasus beban (load case) yang terjadi secara bersamaan.

Untuk memastikan bahwa suatu struktur bangunan dapat bertahan selama umur rencananya, maka pada proses perancangan dari struktur, perlu ditinjau beberapa kombinasi pembebanan yang mungkin terjadi pada struktur. Kombinasi pembebanan yang harus diperhitungkan pada perancangan struktur bangunan gedung adalah:

1) Kombinasi Pembebanan Tetap Pada kombinasi pembebanan tetap ini, beban yang harus diperhitunkan bekerja pada struktur adalah (SNI 1727-2013).

2) Kombinasi Pembebanan Sementara Pada kombinasi pembebanan sementara ini, beban yang harus diperhitungkan bekerja pada struktur adalah (SNI 1727-2013).

Dimana:

D	=Be	ban mati
L	=	Beban hidup
A	=	Beban atap
R	=	Beban hujan
W	=	Beban angin
E	=	Beban gempa
F	=	Tekanan fluida
T	=	Pembebanan
		penurunan pondasi,

Pembebanan suhu, rangkak dan susut beton Koefisien 1,0, 1,2, 1,6, 1,4, merupakan faktor pengali dari beban-beban tersebut, yang disebut faktor beban (*load factor*). Sedangkan faktor 0,5 dan 0,9

merupakan faktor reduksi. Sistem struktur dan elemen struktur harus diperhitungkan terhadap dua kombinasi pembebanan, yaitu pembebanan tetap dan pembebanan sementara, momen lentur (Mu), momen torsi atau puntir (Tu), gaya geser (Vu), dan gaya normal (Pu) yang terjadi pada elemenelemen struktur akibat kedua kombinasi pembebanan yang ditinjau, dipilih yang paling besar harganya, untuk selanjutnya digunakan pada proses desain.

3. Dasar Perhitungan Dan Pembebanan Rencana

1). Pelat dua arah

Pelat dua arah adalah pelat yang didukung sepanjang keempat sisinya dengan lendutan yang akan timbul pada dua arah yang saling tegak lurus atau perbandingan antara sisi panjang dan sisi pendek yang saling tegak lurus yang tidak lebih dari dua.

Pelat lantai yang dirancang adalah plat lantai dua arah yang didukung pada keempat sisinya. Untuk memudahkan perancangan akan digunakan tabel dari grafik dan hitungan beton bertulang berdasarkan SNI-03-2847-2013.

- ➤ Menentukan Tebal Minimum Pelat (h)
 - I. Untuk lm lebih besar 0,2 tapi tidak boleh lebih dari 2,0, h tidak boleh lebih dari

$$h = \frac{\ln (0.8 + \frac{fy}{1400})}{36 + 5\beta(\alpha m - 0.2)}$$

dan tidak boleh kurang dari 125 mm

II. untuk lm lebih besar dari 2,0,ketebalan pelat minimum tidak boleh kurang dari

$$h = \frac{\ln (0.8 + fy/1400)}{36 + 9\beta}$$

dan tidak boleh dari 90 mm

dimana:

h = tebal pelat

ln = panjang bentang bersih dalam arah melintang

β = perbandingan antara bentang bersih dalam arah memanjang terhadap arah melintang dua arah

 αm = nilai rata-rata dari α

$$\alpha = \frac{\text{Ecb. Lb}}{\text{Ecs. Ls}}$$

Ecb = modulus elastis pada beton Ecs = modulus elastis pada pelat.

Menentukan Momen Lentur Pelat yang Terjadi

Perencanaan dan analisis dilakukan dengan menggunakan konsep beban Amplop yaitu dengan menggunakan koefisien momen Besar momen lentur adalah:

$$Mlx = 0.001.qu.Lx^{2}.Clx$$

 $Mtx = 0.001.qu.Lx^{2}.Clx$
 $Mly = 0.001.qu.Lx^{2}.Cly$
 $Mty = 0.001.qu.Lx^{2}.Cly$

Dengan:

qu = Beban Total

Lx = Panjang bentang pendek

Ctx = Koefisien momen tumpuan arah x

Clx = Koefisien momen lapangan arah x

Cty = Koefisien momen tumpuan arah y

Cly = Koefisien momen lapangan arah y

Menentukan tulangan (As) arah x dan y

$$\rho = \frac{0.8 \text{fy} \cdot \sqrt{(0.8 \text{fy})^2 - 4(0.4704 \frac{\text{fy}^2}{\text{fc}})(\frac{\text{Mu}}{\text{bd}^2})}}{2 \times (0.4704 \frac{\text{fy}^2}{\text{f'c}})}$$

$$\rho_{\text{min}} = \frac{1.4}{\text{fy}}$$

$$\rho_{\text{maks}} = 0.75 \left(\frac{0.85 \text{ fc } \beta}{\text{fy}}\right) \left(\frac{600}{600 + \text{fy}}\right)$$

Rasio baja-tulangan harus memenuhi pmin ≤ pada ≤ pmaks

- Jika pada < pmin, maka digunakan $\rho = \rho \min dan As = \rho ada.b.d$
- Jika ρada > ρmaks, maka tebal pelat harus diperbesa Setelah didapatkan nilai ρperlu, maka

Asperlu = ρ perlu.b.d Jarak tulangan pokok (di ambil b= 1 meter) (Jarak tul.= $1000/(As/(1/4 d^2))$

2). Balok

Balok adalah bagian struktur yang berfungsi sebagai pendukung beban vertikal dan horizontal. Beban vertikal berupa beban mati dan beban hidup yang diterima plat lantai, berat sendiri balok dan berat dinding penyekat yang di atasnya. Sedangkan beban horizontal berupa beban angin dan gempa. Balok merupakan bagian struktur bangunan yang penting dan bertujuan untuk memikul beban tranversal yang dapat berupa beban lentur, geser maupun torsi. Oleh karena itu perencanaan balok yang efisien, ekonomis dan aman sangat penting untuk suatu bangunan terutama struktur struktur bertingkat tinggi atau struktur berskala besar. Langkahlangakah perencanaan balok:

Menentukan mutu beton dan baja tulangan:

f'c \leq 30MPa maka β 1 = 0,85 Mpa f'c \geq 30MPa maka β 1 = 0,65 Mpa

Menentukan nilai rasio tulangan (ρ) :

$$\begin{split} & \rho \\ & = \frac{0.8 \text{ fy} \sqrt{(0.8 \text{ fy})^2 - 4 \left(0.4704 \frac{\text{fy}^2}{\text{f'c}}\right) \left(\frac{\text{mu}}{\text{bd}^2}\right)}}{2 \text{ X} \left(0.4704 \text{ X} \frac{\text{fy}^2}{\text{f'c}}\right)} \\ & \rho_{\text{min}} = \frac{1/4}{\text{fy}} \\ & \rho_{\text{maks}} = 0.75 \left(\frac{0.75 \text{ fc } \beta}{\text{fy}}\right) \left(\frac{600}{600 + \text{fy}}\right) \end{split}$$

disyaratkan : ρmin< ρ <ρmaks

ho = Rasio tulangan terhadap luas beton efektif dalam kondisi seimbang <math>
ho maks = Rasio tulangan maksimum ho min = Rasio tulangan minimum

Menentukan tinggi efektif (d) dan lebar (b) penampang beton $b = \frac{1}{2}h$

 $d = h - dc - \frac{1}{2} Ø tulangan -$

½ Øsengkang

3). Kolom

Definisi kolom adalah komponen struktur bangunan yang tugas utamanya menyangga beban aksial desak vertikal dengan bagian tinggi yang tidak ditopang paling tidak tiga kali dimensi lateral terkecil. Kolom adalah batang tekan vertikal dari rangka (frame) struktur yang memikul beban dari balok induk maupun balok anak. Kolom meneruskan beban dari elevasi atas ke elevasi yang lebih bawah hingga akhirnya ke tanah melalui pondasi. sampai Keruntuhan pada suatu kolom merupakan kondisi kritis yang dapat menyebabkan runtuhnya (collapse) lantai vang bersangkutan dan juga runtuh total (total collapse) seluruh struktur. Kolom adalah struktur vang mendukung beban dari atap, balok dan berat sendiri yang diteruskan ke pondasi. Secara struktur kolom menerima beban vertikal yang besar, selain itu harus mampu menahan beban-beban horizontal bahkan momen atau puntir/torsi akibat eksentrisitas pengaruh terjadinya pembebanan. hal yang perlu diperhatikan adalah tinggi kolom perencanaan, mutu beton dan baja yang digunakan dan eksentrisitas pembebanan yang terjadi. dengan kata lain kolom juga diperhitungkan untuk menyangga beban aksial tekan dengan eksentrisitas tertentu,

Pu < Pn Pn = 0,1.Ag.Fc

Keterangan:

Pu = Beban Pada Kolom

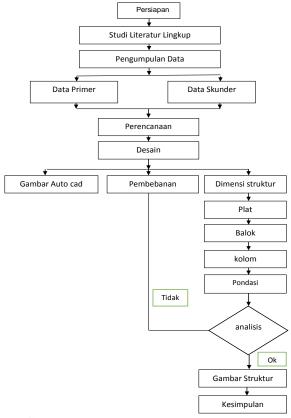
Pn = Kekuatan Kolom

Fc' = Mutu beton yang digunakan

Ag= Dimensi kolom (Luasan Kolom)

0,1 = Faktor Reduksi

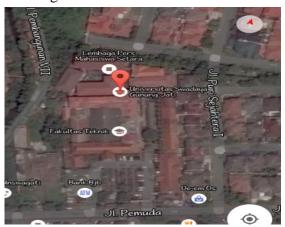
Jika Pu > Pn maka penampang Kolom Harus diperbesar atau mutu beton harus dinaikan.


3. METODE DAN OBYEK PENELITIAN

A. Metode Penelitian

Desain penelitian dimulai dengan mengumpulkan dan mempelajari literatur yang berkaitan dengan perencanaan. Mengumpulkan data yang akan digunakan sebagai data dalam obyek. Desain yang digunakan dalam penelitian ini sebagai berikut:

- 1. eksisting berupa luas tanah luas bangunan serta fungsi bangunan yang akan direncanakan
- 2. Studi literatur dengan mengumpulkan reverensi dan metode yang dibutuhkan sebagai tinjauan pustaka baik dari buku maupun media lain (internet).
- 3. Pengolahan dan analisa data-data yang didapat.
- 4. Perencanaan Gedung Aula
- 5. SNI pembebanan 2013.
- 6. Pengambilan kesimpulan dan saran dari hasil kajian.


Adapun alur penelitian ini tergambar pada bagan alur berikut :

Gambar 3.1 Kerangka Alur Penelitian

B. Lokasi Penelitian

Pada penelitian ini berlokasi di Jl.pemuda kampus 1 Universitas Swadaya Gunung Jati Cirebon

Penelitian

Gambar 3.2 Lokasi Penelitian

4. HASIL PENELITIAN DAN PEMBAHASAN

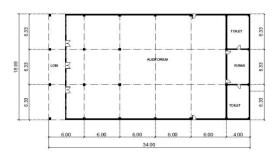
A. HASIL PENELITIAN

Dari hasil analisis. pembangunan penting gedung aula sangat untuk menunjang kegiatan akademik maupun akademik selain itu dengan adanya gedung aula, Universitas Swadaya Gunung Jati sudah tidak perlu menyewa gedung untuk menyelenggarakan wisuda. Dan dalam perencanaan bangunan aula universitas swadaya Gunung Jati Cirebon yang menggunakan struktur Beton, serta menerapkan SNI 2013 dalam acuan pembebanan didapatkan penggunaan profil struktur pada pembangunan aula adalah

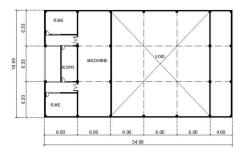
or or in the production of the control of the contr		
	Lantai	Dimensi
Atap	=	Baja 2l 65 x 65
pelat	2 - 3	13 cm
Balok Portal	2 - 3	35 x 45
Balok Induk	2 - 3	30 x 40
Balok Anak	2 - 3	27 x 40
Kolom	1	45 x 45
Kolom	2	40 x 40
Kolom	3	40 x 40

Tabel 4.1 Profil struktur gedung aula

Profil struktur diatas sudah mampu melayani beban yang terjadi pada gedung Aula tentunya sesuai fungsi


B. PEMBAHASAN

1. Desain Struktur


Bangunan yang direncanakan terdiri dari tiga lantai berdasarkan data pada bab sebelumnya dengan perencanaan bangunan lantai dasar pada aula universitas swadaya gunung jati diperuntukan untuk fasilitas Koperasi, Kantin, R.Perlengkapan, R.registrasi, student hall, student center. Sedangkan untuk lantai 2 diperuntukan sebagai aula atau auditorium dan lantai 3 diperuntukan mezanin, R.Me, R.operator.

Gambar 4.1 Denah Lantai 1

Gambar 4.2 Denah Lantai 2

Gambar 4.3 Denah Lantai 3

2. Perencanaan Struktur

a. Atap

Atap yang direncanakan dari baja dengan pembebanan pada atap didasarkan pada penutup atap dan beban pelaksanaan di dapat profil baja yaitu 21 65x65, Untuk perhitungan pelat terdapat pada lampiran.

b. Pelat

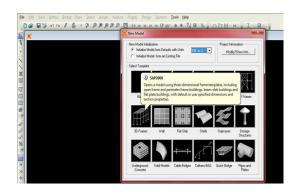
Pelat lantai direncanakan dari beton yang dicor, dengan pembebanan pada pelat didasarkan pada penggunaan atau kegunaan lantai tersebut dan disesuaikan dengan SNI-1727- 2013.Perencanaan plat ditinjau dari dua arah yaitu x dan y, dari Ix /Iy akan didapatkan koefisien momen sehingga dapat dilakukan perhitungan untuk mendapat tulangan yang dibutuhkan. Untuk perhitungan pelat terdapat pada lampiran.

Tabel 4.2 Dimensi rencana struktur untuk pelat

	Tebal
Lantai 2	13 cm
Lantai 3	13 cm

c. Balok dan Kolom

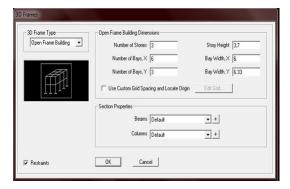
Pada perencanaan balok dan kolom, pembebanan sama seperti pelat yaitu berdasarkan pada penggunaan atau kegunaannya dan disesuaikan dengan SNI – 1727 - 2013. Proses perhitungan balok dan kolom dapat dilihat dalam lampiran dan untuk dimensi balok dan kolom dapat dilihat pada tabel berikut :


Tabel 4.3 Dimensi rencana struktur untuk balok dan kolom

	Lantai	Dimensi
Sloof	1/ Dasar	30 x 40
Balok Portal	2 - 3	35 x 45
Balok Induk	2 - 3	30 x 40
Balok Anak	2 - 3	27 x 40
Kolom	1	45 x 45
Kolom	2	40 x 40
Kolom	3	40 x 40

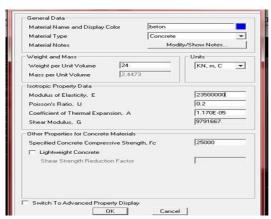
3. Merencang Struktur Dengan SAP

a. Menentukan bentuk struktur


Cara menentukan grid pada *SAP* yaitu klik new, pilh satuan KN,m,C setelah itu pilih *grid only*. Seperti yang tergambar di bawah ini

Gambar 4.4 Tampilan New Model dan Grid Only

b. Menentukan garis grid


Cara memasukan grid pada SAP yaitu isi $number\ Of\ story = 3$ arah X = 6 dan Y = 3, $story\ height = 3.7$ arah X = 6, Y = 6.33, dan lalu klik OK.

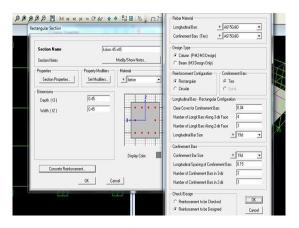
Gambar 4.5 Tampilan pengisian informasi bentang

c. Mendesain Material

Klik define, klik material, lalu klik *add* new material. Isikan nama beton pada material. Ganti tipe material dengan concrete, isikan satuan KN,m,c. Isikan 24 pada weight per unit volume, isikan modulus elastis E = 23500000 atau $(4700\sqrt{fc})$, dan isikan fc' = 25000 lalu klik OK.

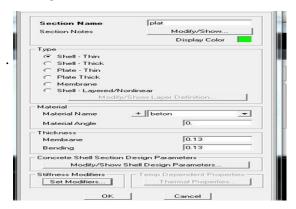
Gambar 4.6 Pengesetan untuk bahan material

d. Mendesain balok


Klik define, pilih section properties lalu klik frame section, lalu klik add new property. Isikan nama balok portal pada section name, pilih beton pada material, isi depth 0.45 dan width 0.35, lalu klik concrete reinforcemen, lalu ganti design type dengan beam, ganti selimut beton 0.04 (terlindungi) lalu OK dan OK.

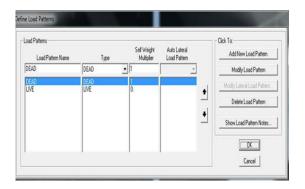
Gambar 4.7 Pengesetan material balok

e. Mendesain kolom

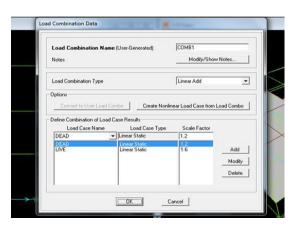

Klik define, pilih section properties lalu klik frame section, lalu klik add new property. Isikan nama Kolom pada section name, pilih beton pada material, isi depth 0.45 dan width 0.45, klik concrete reinforcemen, lalu isi selimut beton menjadi 0.04 lalu (terlindungi) isi jumlah tulangan 4 dan 3, ganti bar size menjadi 19d (diameter 25 milimeter). Lalu klik OK. Seperti Gambar Berikut:

Gambar 4.8 Pengesetan material kolom

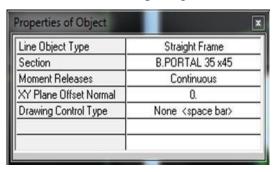
f. Mendesain plat


Klik define, pilih section properties lalu klik area section, lalu klik add new property. Isikan nama plat pada section name, pilih beton pada material, isi membrane dan bending 0.13 lalu klik ok

Gambar 4.9 Pengesetan material Plat


g. Memasukan jenis beban

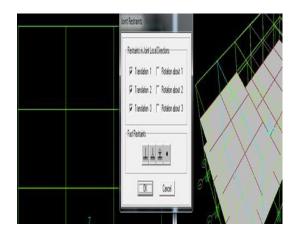
Klik *define*, klik *load pattern* lalu isikan beban *DEAD* = 1 dan *LIVE* = 0. Lalu OK


Gambar 4.10 Pengesetan untuk jenis beban

h. Memasukan jenis beban kombinasi Klik define, klik *load combinations*, klik *add new combo*, lalu isikan pada load case lalu isikan beban *DEAD* = 1,2 dan *LIVE* = 1,6. Lalu OK.

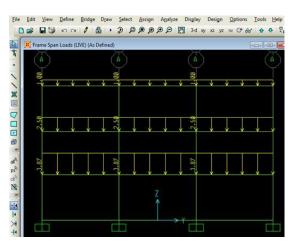
Gambar 4.11 Pembuatan beban kombinasi

i. Menggambar elemen balok pada garis grid.Klik menu *Draw* > *Draw frame* /cable/tendon > *Create Line in Region or at Clicks (xy)*, Dari kotak dialog *properties of object* ganti *properties* dengan balok portal 35 x 45,lalu klik balok pada gird.


Gambar 4.12 Kotak Dialog Properties

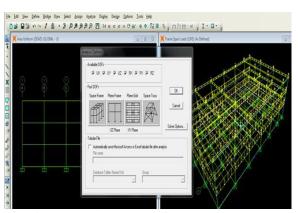
j. Menggambar elemen kolom pada garis grid. Klik menu *Draw* > *Draw frame* /cable/tendon > *Create Line in Region or at Clicks (xz,yz)*, Dari kotak dialog *properties of object* ganti *properties* dengan kolom 35 x 45,lalu klik kolom pada gird

Line Object Type	Straight Frame
Section	kolom 45 x45
Moment Releases	Continuous
Y Plane Offset Normal	0.
Drawing Control Type	None <space bar=""></space>


Gambar 4.13 Kotak Dialog Properties

k. Memasang pondasi jepit pada struktur Klik tiap tumpuan atau blok semua bidang lalu klik *assign*, pilih joint lalu klik *restraints*, setelah itu beri tanda contreng pada setiap kotak atau pilih tumpuan berbentuk jepit.

Gambar 4.14 Pemasangan joint

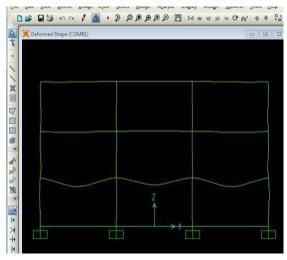

l. Memasukan beban distribusi pada setiap balokKlik tiap balok atau blok semua bidang balok lalu klik assign, pilih frame loads lalu klik distributed, setelah itu beri nama Live, ubah satuan unit sesuai dengan pembebanan yang akan kita masukan, pilih force pada load type and direction lalu isikan 3.78 KN pada uniform load. Lalu pilih replace existing loads pada options lalu klik OK. Uniform loads untuk beban mati sesuai dengan pembebanan pada balok itu sendiri begitu juga pada beban hidup (live).

Gambar 4.15 Pendistribusian beban pada balok

m. Memilih Analisis

Klik set analyze option lalu pilih space frame dan klik OK

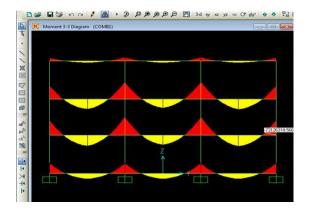
Gambar 4.16 Tahapan Run Analysis


n. Menjalankan Analisis

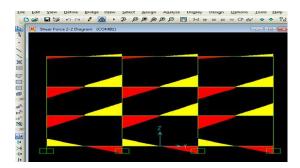
Klik set analyze, klik run analysis, lalu klik modal dan klik run/don't run case. Setelah itu pilih always show di pilihan analysis monitor option lalu klik Run Now

Gambar 4.17 Tahapan Run Analysis

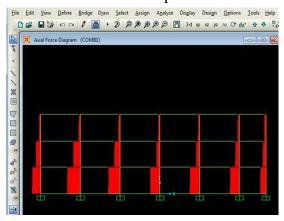
o. Menjalankan Animasi Analisis Setelah melakukan *running* maka klik Show Animasi yang ada di sudut kanan bawah


Gambar 4.18 Show Animation

p. Pengambilan PU dan MU pada hasil SAP. Caranya pilih profil kolom yang diinginkan terus klik kanan > klik summary pilh PU dan Mu yang terbesar untuk dimasukan dalam perhitungan Kolom


Gambar 4.19 Hasil desain Struktur Frame

q. Menampilkan Momen Lentur, Klik Display > Show Force / Stress > Frame/Cables kemudian pilih Momen 3-3


Gambar 4.20 Hasil dari momen lentur

r. Menampilkan Gaya Geser, Klik Display > Show Force/Stress > Frame/Cables kemudian pilih Shear 2-2

Gambar 4.21 Tampilan gaya Gaya Geser

s. Menampilkan Gaya Normal, Klik Display > Show Force / Stress > Frame/Cables kemudian pilih Axial Force.

Gambar 4.29 Hasil akhir dari Gaya Normal

5. KESIMPULAN DAN SARAN

A. KESIMPULAN

Setelah dilakukan pengumpulan data, pembahasan dan analisis pada bab-bab sebelumnya berdasarkan data yang ada, maka dapat di tarik suatu kesimpulan sebagai berikut:

- 1. Dari pengamatan langsung, setiap tahunya penerimaan mahasiswa terus meningkat selain itu setiap penyelenggaraan kegiatan wisuda selalu dilaksanakan di luar gedung UNSWAGATI. Sehingga dengan aula pembangunan ini bisa menampung seluruh kegiatan yang ada di Universitas yang bersifat akademik maupun non akademik.
- Penentuan Pembebanan disesuaikan fungsi dari bangunan yang mengacu SNI 2013 khususnya beban hidup
- 3. Perencanaan bangunan tiga lantai dengan fungsi utama sebagai aula atau tempat pertemuan memiliki luas bangunan sekitar 1938 m² dengan menggunakan dimensi kolom 40 x 40 cm, 45 x 45 cm dan balok dengan dimensi 27 x 40 cm, 30 x 40, dan 35x 45 cm dengan tebal pelat 13 cm dan atap menggunakan baja kopel 2 x 65 x 65.

- 4. Dari hasil perhitungan pada pelat lantai memakai tulangan Ø 12 lantai. Untuk balok portal dan balok induk menggunakan tulangan D 12, D13 D16, D19 dan untuk tulangan gesernya berjarak,150 mm,100 mm, 170mm. Pada perhitungan kolom memakai tulangan D 16 dan D 19 dengan tulangan geser berjarak 100 mm dan 150 mm.
- 5. Pemilihan pondasi menggunakan pondasi sumuran, ini didasarkan pada pengamatan yang sudah dilakukan .

B. SARAN

- 1. Konsep perencanaan harus disesuaikan dengan fungsi tersebut bangunan yang mengacu Standar yang sudah disesuaikan (SNI-1727-2013), Dengan demikian kekuatan dari bangunan tersebut bisa menampung beban sesuai dengan kapasitasnya.
- 2. Peninjauan lebih lanjut dalam penentuan dimensi struktur baik pelat, balok, kolom maupun pondasi yang direncanakan berdasarkan pembebanan yang diterima masing masing profil.
- 3. Untuk perencanaan pondasi sebaiknya dilakukan penyondiran untuk mengetahui jenis tanah.

DAFTAR PUSTAKA

A. BUKU - BUKU

- Azis sholihin, "Analisis Pengembangan Daerah Wisata di Wilayah Padang Golp Ciperna Kabupaten Cirebon",(skripsi) Universitas Swadaya Gunung Jati Cirebon, 2015
- Harviani Cahya Ruslina, "Pembangunan Asrama SMK BHAKTI HUSADA Kuningan" ,(skripsi) Universitas Swadaya Gunung Jatu Cirebon, 2011

Cahya Indra, 1999, **Beton Bertulang**, Malang.

- Peraturan undang undang No 8 tahun 2002 tentang bangunan gedung
- Drs. Saefudin ; Drs. Djamaluddin, 1999, **"Konstruksi Beton Bertulang"** ,Bandung, Angkasa,
- Ir iman Satyorno, 2009, "SAp 2000 untuk Struktur 2D dan 3D", Universitas Gadja mada yogyakarta
- Badan Standardisasi Nasional.

 "Persyaratan beton Struktural untuk
 Bangunan gedung"

 (SNI 2847: 2013)
- Badan Standardisasi Nasional. **"Beban minimum untuk Perencanaan bangunan gedung dan struktur lain"**,(SNI 1727: 2013)
- Departemen Pekerjaan Umum. **"Pedoman Perencanaan Pembebanan Untuk Rumah dan Gedung"**,(SKBI 1.3.53.1987)
- "Pedoman Penulisan Skripsi", Universitas Swadaya Gunung Jati, Cirebon, 2015
- "Standar Perencanaan Irigasi",
 Direktorat Jenderal Pengairan
 Departemen Pekerjaan Umum,
 Bandung, 1986
- "Pedoman Penulisan Skripsi", Universitas Swadaya Gunung Jati, Cirebon, 2015

B. PERATURAN PERUNDANG – UNDANGAN

Peraturan Undang-Undang Republik Indonesia No. 28 tahun 2002 tentang bangunan gedung

C. LAIN - LAIN

LAB Universitas Swadaya Gunung Jati Cirebon