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Abstract 

The Jeffrey prior is noninformative prior formed from the Fisher information. However, nowadays, 

Fisher information is extended to generalized fisher information, which has various forms of 

specifications. Therefore, this paper aims to establish a theoretical framework of the extended Jeffrey 

prior based on generalized Fisher information as a first step of investigation for future research. The 

findings of this study are that the form of the extended Jeffrey prior varies depending on the type of 

generalized fisher information used. However, the posterior formed using the extended Jeffrey prior is 

not closed-formed and requires a more complex estimation algorithm than the standard algorithm. 
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1. Introduction 

In the Bayesian Statistics paradigm, priors play an important role as information on 

parameters as random variables. This is what distinguishes it from the Frequentist 

approach. The prior can be interpreted as a form of frequency distribution, a form of 

normative and objective representation of the pattern of a parameter change, and a 

subjective representation of the researcher in seeing the pattern of parameter change. 

This means that the value of a parameter can be generated from the mode pattern of 

the prior data (either symmetry or asymmetry), and the prior usually has a physical 

meaning according to the frequency of occurrence in the data. Although the prior 

distribution is unknown, in order for the selected prior to having meaning, the 

selection of the prior distribution must represent the conditions of the phenomenon 

in the field. Suppose 𝜃 only has values in a limited range. In that case, it is reasonable 

to use a uniformly distributed prior so that each component in the prior domain is 

given an equal chance to be selected as support in forming the posterior. The prior 

can have a meaning that is not under the problem being modeled if the selection 

process is incorrect, resulting in a posterior that is formed differently from the 

observed data pattern (Iriawan, 2020). 

 

The prior distribution is one of the keys to Bayesian inference and displays 

information about the uncertainty of the parameter 𝜃. Determining the prior 

distribution can be done by considering various information that will be used as a 

prior distribution and the nature of the posterior distribution that will be generated. 

Various prior distributions have been developed in many kinds of literature. 

However, they can be broadly grouped based on three types of priors, namely 

conjugate prior, noninformative prior, and subjective prior. A prior is said to be 

conjugate prior if the posterior distribution of the resulting parameters comes from 

the same family of probability distributions as the prior (Hogg et al., 2005). Examples 

of conjugate priors are Normal distribution priors, Beta distribution, and Gamma 

distribution.  
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Noninformative priors are priors that are used when the prior knowledge of the 

model parameters is absent or very little and uncertain. One approach to this prior is 

to choose a prior that is an approximation uniformly distributed in the domain of the 

parameter space under study. Another example of a noninformative prior is the 

diffuse prior, where a Normal distribution with a large enough variance is chosen as 

the prior distribution. Noninformative priors are generally obtained from the sample 

data and the model under study to construct the prior distribution.  

 

One approach to this noninformative prior is to use Jeffrey's rule, which uses Fisher's 

information. The Jeffrey prior is the square root of the Fisher information (Box & Tiao, 

1992). Fisher information is mathematically the variance of the partial derivation of 

the log-likelihood function concerning a parameter contained in its likelihood. Thus 

philosophically, Fisher information can be interpreted as how much information 

about the parameters contained in the sample data, where the sample data follows a 

particular probability distribution. Then, suppose it is associated with the 

formulation of the Jeffrey prior. In that case, the Jeffrey prior is the standard deviation 

of the partial derivation of the log-likelihood function of a parameter. With that in 

mind, a Jeffrey prior means a prior based on the distribution of candidate parameters 

that contains the posterior parameters in its range.  

 

Fisher information in its development has a more general form or what is called 

Generalized fisher information (Boekee, 1977; Furuichi, 2010; Lutwak et al., 2012; 

Bercher, 2013) proposes a more general form of Fisher information. The purpose of 

the generalized formulation of Fisher information is to relate the mean absolute error 

to the higher order power of an estimator (Boekee, 1977), to make Fisher information 

invariant under all entropies concerning Stam's Inequality (Lutwak et al., 2012), and 

to accommodate the relationship between maximizing entropy and minimizing 

Fisher information in a more general form (Furuichi, 2010 and Bercher, 2013). Based 

on the description of the last two paragraphs, an extended Jeffrey prior can be formed 

by replacing the original form of Fisher information with generalized Fisher 

information, which is the goal of this paper. 

 

2. Method 

Fisher Information 

The Fisher information of a random variable 𝑋 that follows a probability function 

𝑓(𝑋; 𝜃) is defined as follows: 

𝐼(𝜃) = 𝐸 [(
𝜕

𝜕𝜃
ln 𝑓(𝑋; 𝜃))

2

]                                                    (1). 𝑎 

         = −𝐸 [
𝜕2

𝜕𝜃2
ln 𝑓(𝑋; 𝜃)]                                                           (1). 𝑏 

 

The Fisher information based on Eqs.(1).a and (1).b is a means to quantify how much 

information an observable random variable 𝑋 has about a parameter that is unknown 

but affects its likelihood. The probability density function (or probability mass 
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function) for 𝑋 conditioned on the value of is denoted by 𝑓(𝑋; 𝜃). It describes the 

likelihood that, given a known value of, we will witness a specific outcome of 𝑋. It is 

simple to determine the "correct" value of 𝜃 from the data, or, put another way, that 

the data 𝑋 contains a lot of information about the parameter, if 𝑓(𝑋; 𝜃) is strongly 

peaked with regard to changes in. The "true" value of 𝜃, which would be determined 

using the complete population being sampled, would need numerous samples of 𝑋 if 

𝑓(𝑋; 𝜃) is flat and spread-out. This implies researching a particular variant with 

regard to 𝜃. 

 

Generalized Fisher Information 

Generalized Fisher Information-Boekee 

 

Boekee (1977) proposed Generalized fisher information as follows: 

𝐼𝑠(𝜃) = [𝐸 [|
𝜕

𝜕𝜃
ln 𝑓(𝑋; 𝜃)|

𝑠
𝑠−1

]]

𝑠−1

, 𝑠 ≥ 1.                          (2) 

If 𝐼𝑠(𝜃) is of order 𝑠 ≥ 2, 𝐼𝑠(𝜃) is a convex function of 𝑓(𝑥; 𝜃). If 𝐼𝑠(𝜃) is of order 𝑠 = 2, 

𝐼2(𝜃) becomes Fisher information, 𝐼(𝜃). 

 

Generalized Fisher Information-Furuichi 

Furuichi (2010) proposed q-fisher information, which is formulated as follows: 

 

𝐼𝑞(𝜃) = 𝐸𝑞 [(
𝜕

𝜕𝜃
ln(𝑞) 𝑓(𝑋; 𝜃))

2

],                                            (3) 

where 

ln(𝑞)(𝑓(𝑥; 𝜃)) =
(𝑓(𝑥; 𝜃))1−𝑞 − 1

1 − 𝑞
, 𝑞 ∈ ℝ, 𝑞 ≠ 1, 𝑥 > 0. 

𝐸𝑞[𝑔(𝑋)] = ∫ (𝑓(𝑥))
𝑞

𝑔(𝑥)𝑑𝑥
𝑅𝑋

                                   

𝑅𝑋 is the domain of the random variable 𝑋,  𝑔(𝑥) is a continuous function, and 𝑓(𝑥) 

is the probability density function. 

 

 

Generalized Fisher Information-Lutwak 

 

Lutwak et al. (2012) proposed a form of generalized fisher information formulated as 

follows: 

 

𝐼𝑝,𝜆(𝜃) = 𝐸 [|(𝑓(𝑋; 𝜃))𝜆−1 (
𝜕

𝜕𝜃
ln 𝑓(𝑋; 𝜃))|

𝑝

] , 𝑝 > 0, 𝜆 > 0                        (4) 

 

Generalized Fisher Information-Bercher 

Bercher (2013) proposed two forms of generalized fisher information: 

a. Generalized fisher information-Bercher Type 1 
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𝐼𝛽,𝑚(𝜃) = 𝐸 [(𝑓(𝑋; 𝜃))𝛽(𝑚−1) |
𝜕

𝜕𝜃
ln 𝑓(𝑋; 𝜃)|

𝛽

] , 𝛽 > 1, 𝑚 ≥ 0               (5) 

Eq.(5) is an extension of Eq.(4). 

 

b. Generalized fisher information-Bercher Type 2 

𝐼𝛽,𝑚
∗ (𝜃) =

𝑘

𝑀𝑞(𝑓)
𝐼𝛽,𝑚(𝜃),                                                          (6) 

where 

𝑀𝑘(𝑓) = ∫ (𝑓(𝑥))
𝑘

𝑑𝑥
𝑅𝑋

, 𝑘 ≥ 0                                                 

 

The Jeffrey Prior 

The Jeffrey prior (Jeffrey, 1967) proposes the following prior form: 

𝜋(𝜃) ∝ √𝐼(𝜃)                                                                (7) 

Eq.(7) implicitly states the existence of a Jeffrey prior to the standard error 𝜃. The 

relation between standard error and Fisher information is formulated as follows: 

𝑉(𝜃) =
1

𝐼(𝜃)
→ 𝑠. 𝑒(𝜃) =

1

√𝐼(𝜃)
 ,                                                     (8) 

where 𝑠. 𝑒(𝜃) is the standard error of the parameter 𝜃. Based on Eq. (8), Eq. (7) 

becomes: 

𝜋(𝜃) ∝
1

𝑠. 𝑒(𝜃)
                                                                     (9) 

Based on Eq.(9), the Jeffrey prior is also proportional to the root of the inverse 

standard error 𝜃. 

 

3. Results and Discussion 

The Extended Jeffrey Prior 

In this study, the author proposed an extended form of Jeffrey prior based on 

generalized Fisher informations (2) - (6)  by adopting the formulation (7) to obtain 

several types of priors as follows: 

 

𝜋𝑠(𝜃) ∝ √𝐼𝑠(𝜃)                                                                        (10) 

𝜋𝑞(𝜃) ∝ √𝐼𝑞(𝜃)                                                                        (11) 

𝜋𝑝,𝜆(𝜃) ∝ √𝐼𝑝,𝜆(𝜃)                                                                     (12) 

𝜋𝛽,𝑚(𝜃) ∝ √𝐼𝛽,𝑚(𝜃)                                                                   (13) 

𝜋𝛽,𝑚
∗ (𝜃) ∝ √𝐼𝛽,𝑚

∗ (𝜃)                                                                  (14) 

 

Eqs. (10) - (14) give a prior that is not close form. This contrasts Jeffrey's prior, which 

uses original fisher information that gives a close form to some probability 

distributions. For this reason, the posterior formulation using the extended Jeffrey 

priors (10) – (14) provides a more complex form than the posterior with the Jeffrey 
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prior so that the additional parameters contained in the extended of the Jeffrey prior 

can be assumed to be random variables that under a particular distribution. 

 

Example Studies 

The Exponential Distribution 

Suppose 𝑋1, … , 𝑋𝑛 under an exponential distribution with rate 𝜃, 

𝑓(𝑥; 𝜃) = 𝜃𝑒−𝜃𝑥; 𝜃 > 0, 𝑥 ≥ 0                                                       (15) 
ln 𝑓(𝑥; 𝜃) = −𝜃𝑥 + ln 𝜃              

𝜕

𝜕𝜃
ln 𝑓(𝑋; 𝜃) = −𝑥 +

1

𝜃
                           

So the Generalized fisher information-Boekee of Eq.(15) is 

 

𝐼𝑠(𝜃) = [𝐸 [|−𝑥 +
1

𝜃
|

𝑠
𝑠−1

]]

𝑠−1

, 𝑠 ≥ 1.                          (16) 

Based on Eq.(16), the extended Jeffrey priors can be formed: 

 

 

a. 𝜋𝑠(𝜃) 

𝜋𝑠(𝜃) ∝ √𝐼𝑠(𝜃)                                                                                       

∝ √[𝐸 [|−𝑥 +
1

𝜃
|

𝑠
𝑠−1

]]

𝑠−1

                                                       

∝ [𝐸 [|−𝑥 +
1

𝜃
|

𝑠
𝑠−1

]]

𝑠−1
2

,
𝑠 − 1

2
≥ 0 ,

𝑠

𝑠 − 1
≥ 0      (17) 

where: 

𝐸 [|−𝑥 +
1

𝜃
|

𝑠
𝑠−1

] = ∫ (𝜃𝑒−𝜃𝑥) |−𝑥 +
1

𝜃
|

𝑠
𝑠−1

𝑑𝑥
∞

0

                   (18) 

 

b. 𝜋𝑞(𝜃) 

  𝜋𝑞(𝜃) ∝ √𝐼𝑞(𝜃) 

∝ √𝐸𝑞 [(
𝜕

𝜕𝜃
[
(𝜃𝑒−𝜃𝑥)1−𝑞 − 1

1 − 𝑞
])

2

]                                   

∝ √𝐸𝑞 [(
𝜕

𝜕𝜃
[
𝜃1−𝑞𝑒−𝜃𝑥(1−𝑞) − 1

1 − 𝑞
])

2

]                              

∝ √𝐸𝑞[(𝜃−𝑞(1 − 𝜃𝑥)𝑒𝑥(−1+𝑞)𝜃)2]                         (19) 

where 
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𝐸𝑞 [(𝜃−𝑞(1 − 𝜃𝑥)𝑒𝑥(−1+𝑞)𝜃)
2

] = ∫ (𝜃𝑒−𝜃𝑥)
𝑞

(𝜃−𝑞(1 − 𝜃𝑥)𝑒𝑥(−1+𝑞)𝜃)
2

𝑑𝑥
∞

0

     (20) 

 

c. 𝜋𝑝,𝜆(𝜃) 

𝜋𝑝,𝜆(𝜃) ∝ √𝐼𝑝,𝜆(𝜃)                                                         

∝ √𝐸 [|(𝜃𝑒−𝜃𝑥)𝜆−1 (−𝑥 +
1

𝜃
)|

𝑝

] 

∝ √𝐸 [|−𝑥(𝜃𝑒−𝜃𝑥)𝜆−1 +
(𝜃𝑒−𝜃𝑥)𝜆−1

𝜃
|

𝑝

]                                         (21) 

where 

𝐸 [|−𝑥(𝜃𝑒−𝜃𝑥)
𝜆−1

+
(𝜃𝑒−𝜃𝑥)

𝜆−1

𝜃
|

𝑝

]

= ∫ (𝜃𝑒−𝜃𝑥) |−𝑥(𝜃𝑒−𝜃𝑥)
𝜆−1

+
(𝜃𝑒−𝜃𝑥)

𝜆−1

𝜃
|

𝑝

𝑑𝑥
∞

0

   (22) 

 

4. 𝜋𝛽,𝑚(𝜃) 

𝜋𝛽,𝑚(𝜃) ∝ √𝐼𝛽,𝑚(𝜃)                                             

                 ∝ √𝐸 [(𝜃𝑒−𝜃𝑥))𝛽(𝑚−1) |−𝑥 +
1

𝜃
|

𝛽

]  ,                                           (23) 

where 

𝐸 [(𝜃𝑒−𝜃𝑥))
𝛽(𝑚−1)

|−𝑥 +
1

𝜃
|

𝛽

]

= ∫ (𝜃𝑒−𝜃𝑥)(𝜃𝑒−𝜃𝑥))
𝛽(𝑚−1)

|−𝑥 +
1

𝜃
|

𝛽

𝑑𝑥
∞

0

                          (24) 

 

5. 𝜋𝛽,𝑚
∗ (𝜃) 

𝜋𝛽,𝑚(𝜃) ∝ √𝐼𝛽,𝑚
∗ (𝜃)                                             

       ∝ √(
𝑘

∫ (𝜃𝑒−𝜃𝑥)𝑘𝑑𝑥
∞

0

) 𝐼𝛽,𝑚(𝜃)  

                                                  

∝ √(
𝑘

∫ (𝜃𝑒−𝜃𝑥)𝑘𝑑𝑥
∞

0

) 𝐸 [(𝜃𝑒−𝜃𝑥))𝛽(𝑚−1) |−𝑥 +
1

𝜃
|

𝛽

]           (25) 

where 

𝐸 [(𝜃𝑒−𝜃𝑥))
𝛽(𝑚−1)

|−𝑥 +
1

𝜃
|

𝛽

]

= ∫ (𝜃𝑒−𝜃𝑥)(𝜃𝑒−𝜃𝑥))
𝛽(𝑚−1)

|−𝑥 +
1

𝜃
|

𝛽

𝑑𝑥
∞

0

                      (26) 
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The Form of Posteriors 

Suppose 𝑋1, … , 𝑋𝑛 follows an exponential distribution with rate θ. The likelihood 

function is: 

𝑓(𝑥1, … , 𝑥𝑛|𝜃) = 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1                                               (27) 

Posterior of θ using Jeffrey's extended prior 

 

a. Posterior based on 𝜋𝑠(𝜃) 

 
𝑓𝑠(𝜃|𝑥1, … , 𝑥𝑛)

∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝑠(𝜃)                                                                                                                (28) 

 

Insert Eqs. (17), (18), and (27) into Eq.(28) to obtain: 

 
𝑓𝑠(𝜃|𝑥1, … , 𝑥𝑛) ∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝑠(𝜃) 

𝑓𝑠(𝜃|𝑥1, … , 𝑥𝑛)  ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 [𝐸 [|−𝑥 +

1

𝜃
|

𝑠
𝑠−1

]]

𝑠−1
2

 

                           ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 [∫ (𝜃𝑒−𝜃𝑥) |−𝑥 +

1

𝜃
|

𝑠
𝑠−1

𝑑𝑥
∞

0

]

𝑠−1
2

, 𝑠

≥ 1                                                  (29) 

 

b. Posterior based on 𝜋𝑞(𝜃) 

 
𝑓𝑞(𝜃|𝑥1, … , 𝑥𝑛)

∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝑞(𝜃)                                                                                                               (30) 

 

Insert Eqs. (19), (20), and (27) into Eq. (30) to obtain: 

 
𝑓𝑞(𝜃|𝑥1, … , 𝑥𝑛) ∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝑞(𝜃) 

                              ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 √𝐸𝑞[(𝜃−𝑞(1 − 𝜃𝑥)𝑒𝑥(−1+𝑞)𝜃)2] 

                           ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 [∫ (𝜃𝑒−𝜃𝑥)

𝑞
(𝜃−𝑞(1

∞

0

− 𝜃𝑥)𝑒𝑥(−1+𝑞)𝜃)
2

𝑑𝑥]

1
2

                                         (31) 

 

c. Posterior based on 𝜋𝑝,𝜆(𝜃) 

 
𝑓𝑝,𝜆(𝜃|𝑥1, … , 𝑥𝑛)

∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝑝,𝜆(𝜃)                                                                                                         (32) 

 

Insert Eqs.(21), (22), and (27) into Eq. (32) to obtain: 
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𝑓𝑝,𝜆(𝜃|𝑥1, … , 𝑥𝑛) ∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝑝,𝜆(𝜃) 

                                ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 √𝐸 [|−𝑥(𝜃𝑒−𝜃𝑥)𝜆−1 +

(𝜃𝑒−𝜃𝑥)𝜆−1

𝜃
|

𝑝

] 

                           ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 [∫ (𝜃𝑒−𝜃𝑥) |−𝑥(𝜃𝑒−𝜃𝑥)

𝜆−1
∞

0

+
(𝜃𝑒−𝜃𝑥)

𝜆−1

𝜃
|

𝑝

𝑑𝑥]

1
2

                         (33) 

 

d. Posterior based on 𝜋𝛽,𝑚(𝜃) 

 
𝑓𝛽,𝑚(𝜃|𝑥1, … , 𝑥𝑛)

∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝛽,𝑚(𝜃)                                                                                                    (34) 

 

Insert Eqs.(23), (24), and (27) into Eq. (34) to obtain:  

 
𝑓𝛽,𝑚(𝜃|𝑥1, … , 𝑥𝑛) ∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝛽,𝑚(𝜃) 

                                  ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 √𝐸 [(𝜃𝑒−𝜃𝑥))𝛽(𝑚−1) |−𝑥 +

1

𝜃
|

𝛽

] 

∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 [∫ (𝜃𝑒−𝜃𝑥)(𝜃𝑒−𝜃𝑥))

𝛽(𝑚−1)
|−𝑥 +

1

𝜃
|

𝛽

𝑑𝑥
∞

0

]

1
2

                                    (35) 

 

 

 

e. Posterior based on 𝜋𝛽,𝑚
∗ (𝜃) 

 
𝑓𝛽,𝑚

∗ (𝜃|𝑥1, … , 𝑥𝑛)

∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝛽,𝑚
∗ (𝜃)                                                                                                    (36) 

 

Insert Eqs. (25), (26), and (27) into Eq. (36) to obtain: 

 
𝑓𝛽,𝑚

∗ (𝜃|𝑥1, … , 𝑥𝑛) ∝ 𝑓(𝑥1, … , 𝑥𝑛|𝜃)𝜋𝛽,𝑚
∗ (𝜃) 

                                  ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 √(

𝑘

∫ (𝜃𝑒−𝜃𝑥)𝑘𝑑𝑥
∞

0

) 𝐸 [(𝜃𝑒−𝜃𝑥))𝛽(𝑚−1) |−𝑥 +
1

𝜃
|

𝛽

] 

                            ∝ 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
=1 [(

𝑘

∫ (𝜃𝑒−𝜃𝑥)𝑘𝑑𝑥
∞

0

) ∫ (𝜃𝑒−𝜃𝑥)(𝜃𝑒−𝜃𝑥))
𝛽(𝑚−1)

|−𝑥
∞

0

+
1

𝜃
|

𝛽

𝑑𝑥]

1
2

 (37) 

Eq.(37) adalah bentuk posterior yang diturunkan berdasarkan prior 𝜋𝛽,𝑚
∗ (𝜃) (36).  
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4. Conclusions 

The extended of Jeffrey prior form (10) - (14), which is based on several types of 

generalized fisher information, produces a form that is not closed-form, so the MCMC 

approach is an alternative. The implication is that if the extended of the Jeffrey prior 

is used to form a posterior so that the posterior form is not closed-form, then the 

estimation process involves parallel MCMC in one process. The algorithms that can 

be applied are Metropolis-Hastings, Gibbs sampling, and Hamiltonian Monte Carlo. 
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