PENGARUH PEMBERIAN BATUAN FOSFAT ALAM (BFA) DAN PUPUK KANDANG AYAM TERHADAP PERTUMBUHAN DAN HASIL JAGUNG MANIS (Zea mays saccharata Sturt) KULTIVAR BONANZA F1

Elvira Tiara Gunawan¹, Dodi Budirokhman², Siti Wahyuni³

123 Universitas Swadaya Gunung Jati
Email: elvira tiaragunawan@gmail.com

DOI: https://doi.org/10.33603/agroswagati.v13i1.11003

Accepted: 17 September 2025 Revised: 18 September 2025 Published: 19 September 2025

ABSTRACT

This research was conducted to evaluate the effects of natural rock phosphate (NRP) and chicken manure application on the growth and yield performance of sweet corn (Zea mays saccharata Sturt) cultivar Bonanza F1. The field experiment was carried out in Kalisapu Village, Gunung Jati District, Cirebon Regency, Indonesia, from October to December 2021, using a factorial randomized block design (RBD) with three replications. The treatments consisted of two factors: natural rock phosphate at three rates (250, 350, and 450 kg/ha) and chicken manure at three rates (5, 10, and 15 tons/ha). Observed variables included plant height, number of leaves, stem diameter, root volume, ear diameter, ear weight per plant and plot, and the number of ears per plant and plot. The findings indicated that the interaction between natural rock phosphate and chicken manure significantly influenced root volume at 42 days after planting (DAP). Moreover, an independent application of 350 kg/ha of natural rock phosphate showed the most positive effect on stem diameter. These results suggest that combining natural rock phosphate with organic amendments such as chicken manure can potentially enhance soil fertility and sweet corn productivity under tropical conditions. Further research with different dosage combinations and locations is recommended to confirm these outcomes.

Keywords: Sweet corn, natural rock phosphate, chicken manure, soil fertility, crop productivity.

1. PENDAHULUAN

Jagung merupakan salah satu komoditas pangan strategis dunia setelah padi dan gandum. Tanaman ini memiliki peranan penting tidak hanya sebagai sumber karbohidrat tetapi juga sebagai bahan baku industri, pakan ternak, dan pangan alternatif. Di berbagai negara seperti Amerika Serikat, Meksiko, dan Brasil, jagung menjadi komoditas utama yang menopang ketahanan pangan dan ekonomi nasional. Di Indonesia,

meskipun beras masih menjadi makanan pokok, jagung memiliki kedudukan penting sebagai pangan substitusi, terutama di daerah-daerah tertentu seperti Madura dan Nusa Tenggara, di mana masyarakat secara turun-temurun mengonsumsi jagung sebagai makanan pokok (Pusat Data dan Sistem Informasi Pertanian, 2016).

Salah satu varietas jagung yang berkembang pesat adalah jagung manis (Zea mays saccharata Sturt). Jenis ini

memiliki karakteristik biji dengan endosperm transparan, kulit biji tipis, dan kadar gula tinggi, sehingga menghasilkan rasa manis yang khas. Jagung manis muda. umumnva dipanen direbus. dibakar, atau diolah menjadi berbagai produk pangan siap konsumsi. Dalam 100 gram biji jagung manis, terkandung energi sebesar 147 kalori, protein 5,1 g, karbohidrat 31,5 g, serta sejumlah vitamin dan mineral penting seperti fosfor. kalsium. vitamin dan (Kemenkes, 2017). Hal ini menjadikan jagung manis tidak hanya bernilai ekonomis, tetapi juga bergizi tinggi dan digemari masyarakat perkotaan maupun pedesaan.

Produksi jagung manis Indonesia menunjukkan tren fluktuatif. Data Kementerian Pertanian (2020) mencatat bahwa pada periode 2016-2020, produktivitas rata-rata jagung berkisar antara 52,27–54,36 manis kwintal per hektar. Meski tergolong cukup tinggi, pengembangannya masih terkendala oleh berbagai faktor, di antaranya harga benih yang relatif mahal, kebutuhan pemeliharaan intensif, serta kerentanan terhadap hama dan penyakit (Mayadewi, 2007). Selain itu, kebutuhan pupuk yang cukup tinggi menjadi tantangan tersendiri, mengingat ketersediaan pupuk kimia seringkali terbatas dan harganya semakin meningkat.

Walaupun kombinasi pupuk organik dan anorganik diyakini dapat meningkatkan produktivitas jagung manis, praktik di lapangan masih menunjukkan keterbatasan. Banyak petani lebih memilih pupuk kimia karena hasilnya cepat terlihat, namun dalam jangka panjang menurunkan kesuburan tanah. Sementara itu, penggunaan pupuk secara tunggal seringkali dianggap lambat dalam memberikan respons terhadap pertumbuhan tanaman. ini menimbulkan pertanyaan mengenai dosis dan kombinasi terbaik antara BFA dan pupuk kandang ayam untuk mendukung pertumbuhan serta hasil jagung manis secara optimal.

Pemupukan merupakan salah satu faktor kunci yang menentukan keberhasilan budidaya jagung manis. Secara umum, pupuk berfungsi untuk menambah unsur hara yang diperlukan tanaman agar pertumbuhan dan hasil panen optimal. Pupuk anorganik seperti urea, SP-36, dan KCl memang efektif karena kandungan haranya mudah diserap tanaman dalam waktu relatif singkat. Namun, penggunaan berlebihan pupuk anorganik dapat menimbulkan masalah jangka panjang, seperti penurunan kualitas tanah, meningkatnya keasaman tanah, dan kerusakan struktur tanah (Hasibuan, 2003; Sutanto, 2002).

Unsur hara fosfor (P) menjadi elemen penting dalam salah satu pertumbuhan tanaman jagung. Fosfor berperan dalam proses fotosintesis, respirasi, pembelahan sel, serta pembentukan energi dalam bentuk ATP (Ginting et al., 2006). Ketersediaan fosfor yang cukup mampu meningkatkan perkembangan sistem perakaran dan mempercepat fase generatif tanaman. Sayangnya, fosfor dalam tanah seringkali berada dalam bentuk yang tidak tersedia bagi tanaman, terutama pada tanah masam yang umum dijumpai Indonesia.

Sebagai alternatif, batuan fosfat alam (BFA) dapat digunakan sebagai sumber pupuk fosfor. BFA merupakan bahan alami yang dapat diaplikasikan langsung ke lahan tanpa melalui proses pabrikasi, sehingga relatif lebih murah dibanding pupuk kimia seperti SP-36. Beberapa penelitian menunjukkan bahwa efektivitas BFA sebanding dengan fosfat vang mudah larut, terutama pada tanah masam (Wahida et al., 2007). Dengan demikian, pemanfaatan BFA berpotensi menjadi solusi dalam mengurangi ketergantungan terhadap pupuk fosfat sintetis.

Di sisi lain, pupuk kandang ayam merupakan salah satu sumber pupuk organik yang banyak digunakan petani. Pupuk ini mengandung nitrogen dalam jumlah tinggi, serta unsur hara makro dan mikro yang lengkap (Sitanggang et al., 2015). Aplikasinya tidak hanya memperbaiki struktur fisik tanah agar lebih gembur, tetapi juga meningkatkan kandungan bahan organik dan aktivitas mikroba tanah. Proses dekomposisi pupuk kandang ayam juga menghasilkan asam organik yang dapat meningkatkan kelarutan fosfat dari BFA, sehingga sinergi antara kedua jenis pupuk tersebut sangat mungkin terjadi.

Sejumlah penelitian sebelumnya membahas penggunaan telah maupun pupuk kandang ayam secara terpisah. Misalnya, penelitian Wahida et al. (2007) menunjukkan efektivitas BFA setara dengan SP-36 pada tanah masam, sedangkan penelitian Sitanggang et al. (2015) menekankan keunggulan pupuk kandang ayam dalam meningkatkan kandungan hara tanah. Namun, penelitian yang menitikberatkan pada interaksi kedua jenis pupuk tersebut terhadap pertumbuhan dan hasil jagung manis masih terbatas, terutama pada kondisi agroekosistem dataran rendah tropis seperti di Cirebon. Selain itu, variasi dosis yang tepat dalam mengoptimalkan respon pertumbuhan vegetatif (tinggi tanaman, jumlah daun, diameter batang) dan hasil generatif (diameter tongkol, bobot tongkol, jumlah tongkol) belum banyak dieksplorasi.

Kebaruan dari penelitian ini terletak pada pengujian interaksi antara BFA dan pupuk kandang ayam pada jagung manis kultivar Bonanza F1 di lahan pertanian dataran rendah. Dengan mengombinasikan sumber fosfor alami dan pupuk organik, penelitian ini menawarkan alternatif strategi pemupukan yang lebih ramah lingkungan berpotensi meningkatkan sekaligus efisiensi penggunaan pupuk. Pendekatan diharapkan dapat memberikan kontribusi nyata bagi pengembangan sistem pertanian berkelanjutan Indonesia. Berdasarkan latar belakang dan permasalahan yang ada, penelitian ini bertujuan untuk: a. Menganalisis pengaruh interaksi pemberian batuan fosfat alam (BFA) dan pupuk kandang ayam terhadap pertumbuhan dan hasil

jagung manis (Zea mays saccharata Sturt) kultivar Bonanza F1. b. Menentukan dosis BFA dan pupuk kandang ayam yang memberikan hasil terbaik terhadap pertumbuhan vegetatif maupun generatif tanaman jagung manis.

2. METODE PENELITIAN LOKASI DAN WAKTU PENELITIAN

Penelitian ini dilaksanakan di Desa Kalisapu, Blok Dukumalang, Kecamatan Gunung Jati, Kabupaten Cirebon, Provinsi Jawa Barat. Lokasi penelitian berada pada ketinggian sekitar 7 meter di atas permukaan laut (mdpl) dengan kondisi agroekologi dataran rendah yang umumnya sesuai untuk budidaya jagung manis. Penelitian berlangsung selama tiga bulan, yaitu dari Oktober hingga Desember 2021, yang mencakup seluruh tahapan mulai dari pengolahan tanah, penanaman, pemeliharaan, hingga pemanenan. Pemilihan lokasi didasarkan ketersediaan lahan yang representatif serta karakteristik tanah liat berpasir dengan tingkat kesuburan rendah hingga sedang, sehingga relevan untuk pengujian efektivitas pemupukan batuan fosfat alam (BFA) dan pupuk kandang ayam.

Bahan dan Alat Penelitian

Bahan utama yang digunakan meliputi benih jagung manis kultivar Bonanza F1, batuan fosfat alam dengan kadar 30% P₂O₅, dan pupuk kandang ayam yang telah melalui proses fermentasi. Selain itu, digunakan pupuk Urea dan KCl pupuk tambahan. sebagai serta insektisida Furadan 3G untuk pengendalian hama pada tahap awal pertumbuhan. Alat yang digunakan meliputi timbangan, jangka sorong, penggaris, gelas ukur, meteran, cangkul, ember, papan nama, kamera digital, serta peralatan pendukung lainnya.

Rancangan Percobaan

Penelitian menggunakan Rancangan Acak Kelompok (RAK) pola faktorial dengan dua faktor perlakuan dan tiga kali

ulangan. Faktor pertama adalah **Batuan Fosfat Alam (F)** dengan tiga taraf dosis:

- F1 = 250 kg/ha
- F2 = 350 kg/ha
- F3 = 450 kg/ha

Faktor kedua adalah **Pupuk Kandang Ayam** (A) dengan tiga taraf dosis:

- A1 = 5 ton/ha
- A2 = 10 ton/ha
- A3 = 15 ton/ha

Dengan demikian, terdapat sembilan kombinasi perlakuan (F1A1, F1A2, F1A3, F2A1, F2A2, F2A3, F3A1, F3A2, F3A3) yang diulang tiga kali, sehingga diperoleh total 27 petak percobaan. Ukuran petak adalah 3 m × 1,8 m dengan jarak antar petak 50 cm dan antar ulangan 50 cm. Jarak tanam jagung manis adalah 60 × 30 cm.

Pelaksanaan Penelitian

1. Pengolahan Tanah dan Pemberian Pupuk

Pengolahan tanah dilakukan dua kali sebelum penanaman, yaitu 14 hari dan 7 hari sebelum Pengolahan tanam. pertama dilakukan untuk membalik tanah hingga kedalaman ± 30 cm. memutus gulma, serta memperbaiki struktur tanah. Pada pengolahan kedua, tanah diolah kembali sambil diaplikasikan BFA dan pupuk kandang ayam sesuai dosis perlakuan. Pupuk diberikan dengan cara ditabur merata pada bedengan, kemudian dicampur dengan tanah agar hara lebih mudah tersedia.

2. Penanaman

Lubang tanam dibuat menggunakan tugal dengan kedalaman 3–5 cm. Setiap lubang diisi satu biji jagung manis, kemudian diberi Furadan untuk mencegah serangan hama. Lubang ditutup menggunakan tanah bercampur sekam untuk meniaga kelembapan. Penanaman dilakukan pada pagi hari untuk menjaga viabilitas benih.

3. Pemeliharaan Tanaman

- Penyulaman dilakukan pada umur 7 hari setelah tanam (HST) untuk mengganti benih yang tidak tumbuh.
- Penyiangan dilakukan pada umur 14, 28, dan 42 HST untuk mengendalikan gulma.
- o Pembumbunan dilakukan bersamaan dengan penyiangan umur 21 HST dengan cara menimbun tanah di sekitar pangkal batang
 - agar tanaman lebih kokoh.
- Pengairan diberikan sesuai kebutuhan, terutama menjelang fase berbunga dan pengisian biji.
- o **Pemupukan susulan** menggunakan Urea (300 kg/ha) dan KCl (100 kg/ha) sesuai dosis anjuran, dengan pembagian waktu aplikasi pada umur 7, 21, dan 42 HST.
- Pengendalian hama dan penyakit dilakukan secara mekanis maupun kimiawi. Penyakit bulai (Peronosclerospora maydis) dan serangan ulat grayak (Spodoptera frugiperda) dikendalikan dengan mencabut tanaman sakit atau mengendalikan larva secara manual.
- o **Seleksi tongkol** dilakukan pada umur 50–55 HST dengan menyisakan satu tongkol terbaik pada tiap tanaman.

4. Pemanenan

Jagung manis dipanen pada umur 66–70 HST dengan ciri rambut

tongkol berwarna cokelat, kelobot mulai mengering, dan biji mengkilap. Pemanenan dilakukan dengan cara memetik tongkol secara manual.

Variabel yang Diamati

Pengamatan dibagi menjadi pengamatan penunjang dan pengamatan utama:

1. Pengamatan Penunjang

- o Data curah huian
- o Analisis sifat kimia tanah
- o Analisis kandungan pupuk kandang ayam
- Waktu berbunga
- o Daya tumbuh benih
- o Intensitas serangan hama dan penyakit

Data penunjang digunakan sebagai informasi pendukung, tidak dianalisis secara statistik.

2. Pengamatan Utama

Data utama dianalisis secara statistik, meliputi:

- o **Tinggi tanaman (cm)**: diukur dari pangkal batang hingga titik tumbuh, pada umur 14, 28, dan 42 HST.
- o **Jumlah daun (helai)**: dihitung dari enam sampel per petak, diamati pada umur 14, 28, dan 42 HST.
- o **Diameter batang (cm)**: diukur 10 cm dari pangkal batang menggunakan jangka sorong, pada umur 28 dan 42 HST.
- Volume akar (ml): dihitung dari dua sampel

tanaman destruktif per petak dengan metode perendaman air, pada umur 28 dan 42 HST.

- Diameter tongkol (cm): diukur pada tongkol berkelobot menggunakan jangka sorong saat panen.
- o Bobot tongkol berkelobot (kg): ditimbang per tanaman dan per petak pada saat panen.
- Jumlah tongkol (buah): dihitung per tanaman dan per petak pada saat panen.

Analisis Data Hasil Pengamatan

Data hasil pengamatan utama diolah menggunakan uji statistik model linear (Wjiaya, 2018) sebagai berikut : $Xijk = \mu + ri + Fj + Ak + (FA)jk + \Sigma ijk$ Keterangan :

F: Batuan Fosfat Alam

A: Pupuk Kandang Ayam

Xijk = Nilai pengamatan pada ulangan ke-i, faktor F taraf ke-j, dan faktor A taraf ke-k

 μ = Rata-Rata

Ak

ri = Pengaruh ulangan ke-i

Fi = Pengaruh faktor F taraf ke-i

= Pengaruh faktor A taraf ke-k

(FA)jk = Pengaruh interaksi antara faktor F taraf ke-i dan faktor A taraf ke-i.

 Σ ijk = Pengaruh galat percobaan

Berdasarkan model linear tersebut dapat disusun daftar sidik ragam seperti pada tabel 8.

Tabel 8. Daftar Sidik Ragam

Tuber o. Durtur Sit	iik Raga	111			
Sumber	DB	JK	KT	$F_{ m hitung}$	$F_{0,05}$
Keragaman					
Ulangan (r)	2	Σ Xhij ² /t-/rt	JK(r)/DB(r)	KT(r)/KT(G)	3,634
Perlakuan (t)	8	Σ Xhij ² /r-x/rt	JK(t)/DB(t)	KT(t)/KT(G)	2,951
Batuan Fosfat	(2)	Σ Xhij ² /rk-x ² /rt	JK(F)/DB(F)	KT(F)/KT(G)	3,634
Alam (F)					

Pupuk Kandang	(2)	$\Sigma X^2/rc$ - x^2/rt	JK(A)/DB(A)	KT(A)/KT(G)	3,634
Ayam (A)					
Interaksi (FA)	(4)	JKt-JKB-JKK	JK(FA)/DB(FA)	KT(FA)/KT(G)	3,007
Galat (G)	16	JKtot-JK(r)-JK(t)	JK(G)/DB(G)		
Total	26	Σ Xhij ² -x ² /rt			

Sumber: Wijaya (2018)

Analisis Lanjut

Untuk mengetahui apakah perlakuan berpengaruh terhadap variabel variabel yang diamati, maka dilakukan dengan uji F. Jika nilai F hitung lebih besar dari F tabel pada taraf 5%, menunjukan ada perbedaan yang nyata, maka pengujian dilanjutkan dengan uji jarak berganda Duncan (Wijaya, 2010) dengan rumus sebagai berikut:

LSR
$$(\alpha;dbG) = SSR (\alpha;dbG;p)$$

. Sx

Untuk mencari nilai Sx dihitung dengan cara sebagai berikut :

a. Jika terjadi interaksi:

$$Sx \qquad = \sqrt{\frac{\text{KT Galat}}{r}}$$

- b. Jika tidak terjadi interaksi:
- i. Untuk pengaruh perlakuan dosis Batuan Fosfat Alam:

$$Sx = \sqrt{\frac{KTGalat}{r \times f}}$$

ii. Untuk pengaruh perlakuan dosis Pupuk Kandang Ayam:

$$Sx = \sqrt{\frac{KTGalat}{r \times a}}$$

Keterangan:

LSR = Least Significant Ranges SSR = Studentized Signifikan Ranges

Sx = Standar galat rata-rata

 $\alpha = Taraf nyata$

p = Jarak antar perlakuan
dbG = derajat bebas Galat
F = Batuan Fosfat Alam
A = Pupuk Kandang Ayam
r = Banyaknya ulangan
KTG = Kuadrat Tengah Galat

3. HASIL DAN PEMBAHASAN

Pengamatan Penunjang

Analisis awal tanah pada lokasi penelitian menunjukkan kandungan N total rendah (0,12%), C-organik rendah

Vol 13 No 1, Maret 2025

(1,19%), rasio C/N rendah sedangkan fosfor tersedia sangat tinggi (116,1 ppm) dan kalium juga tinggi (155,4 ppm). Reaksi tanah tergolong netral dengan pH 6,6. Jenis tanah termasuk liat berpasir (56% pasir, 17% debu. 27% liat). Kondisi menunjukkan bahwa meskipun unsur P tersedia cukup tinggi, kandungan N dan bahan organik rendah, sehingga aplikasi pupuk kandang ayam dan batuan fosfat alam (BFA) tetap diperlukan untuk meningkatkan produktivitas iagung manis. Hal ini sejalan dengan pendapat Wirosoedarmo et al. (2011) bahwa jagung tumbuh baik pada tanah yang kaya unsur N, P, dan K dengan pH optimal 5,5–6,5.

Pupuk kandang ayam yang digunakan mengandung N sebesar 2,61%, P₂O₅ 2,01%, K₂O 1,96%, C-organik 39,02%, kadar air 17,19%, dan rasio C/N 15. Kandungan C-organik tergolong tinggi dan memenuhi standar Peraturan Menteri Pertanian Nomor 70/Permentan/SR.140/10/2011.

Kandungan nitrogen lebih tinggi dibanding pupuk kandang sapi atau kambing, sehingga pupuk kandang ayam dinilai efektif dalam memperbaiki kesuburan tanah serta mendukung pertumbuhan vegetatif tanaman (Sitanggang et al., 2015).

Tingkat daya tumbuh mencapai 85% dari total 810 benih yang ditanam, melampaui standar minimum daya kecambah (80%). Hal ini menunjukkan kualitas benih Bonanza F1 cukup baik dan adaptif terhadap kondisi lahan penelitian.

Tanaman mengalami serangan penyakit bulai (Peronosclerospora maydis) dengan intensitas sangat rendah (0,86%), serta hama ulat grayak (Spodoptera frugiperda) dengan

intensitas sekitar 20%. Serangan ini dikendalikan secara mekanis, yaitu mencabut tanaman sakit dan membunuh larva. Keberadaan hama ulat grayak sudah dilaporkan sebagai ancaman serius pada tanaman jagung sejak 2019 (Kementan, 2019). Namun, tingkat kerusakan dalam penelitian ini masih dapat dikendalikan.

Tanaman mulai berbunga pada umur 46 HST dan sekitar 80% populasi berbunga pada umur 54 HST. Seleksi tongkol dilakukan pada umur 56 HST untuk menyisakan satu tongkol terbaik. Pemanenan dilakukan pada umur 66–70 saat tongkol telah matang konsumsi.Pada umur 46 HST sekitar 20% populasi tanaman mulai berbunga dan pada 54 HST hampir 80% sudah berbunga. Pada saat 56 HST dilakukan seleksi tongkol dengan cara mengambil salah satu tongkol dan hanya menyisakan satu tongkol saja. Pada 69 HST tongkol jagung telah memenuhi syarat untuk dipanen dan kemudian dilakukan pemanenan dengan cara memetik tongkol tanaman jagung pada langsung. Tanaman mulai berbunga pada umur 46 HST dan sekitar 80% populasi berbunga pada umur 54 HST. Seleksi tongkol dilakukan pada umur 56 HST untuk menyisakan satu tongkol terbaik. Pemanenan dilakukan pada umur 66-70 saat tongkol telah konsumsi.Pada umur 46 HST sekitar 20% populasi tanaman mulai berbunga dan pada 54 HST hampir 80% sudah berbunga. Pada saat 56 HST dilakukan seleksi tongkol dengan cara mengambil salah satu tongkol dan hanya menyisakan satu tongkol saja. Pada 69 HST tongkol jagung telah memenuhi syarat untuk dan kemudian dilakukan dipanen pemanenan dengan cara memetik tongkol pada tanaman jagung secara langsung.

Tinggi Tanaman

analisis Hasil sidik ragam menunjukkan bahwa pemberian BFA dan pupuk kandang ayam, baik secara tunggal maupun interaksi, tidak berpengaruh nyata terhadap tinggi tanaman pada umur 14, 28, dan 42 HST. Tinggi tanaman rata-rata berkisar antara 461–502 cm. Tidak adanya perbedaan diduga karena ketersediaan unsur hara makro terutama N dan P sudah mencukupi untuk mendukung pertumbuhan vegetatif.

Tabel 9. Pengaruh Batuan Fosfat Alam dan Pupuk Kandang Ayam Terhadap Tinggi Tanaman Jagung Manis Umur 14, 28, dan 42 HST

Perlakuan —	Rata-rata Tinggi Tanaman (cm)		
renakuan —	14 HST	28 HST	42 HST
$F_1 = 0 \text{ ton/ha}$	55,60 a	85,80 a	461,47 a
$F_2 = 10 \text{ ton/ha}$	54,77 a	85,50 a	469,40 a
$F_3 = 20 \text{ ton/ha}$	66,13 a	96,45 a	501,83 a
$A_1 = 100 \text{ kg/ha}$	59,87 a	90,63 a	457,03 a
$A_2 = 150 \text{ kg/ha}$	57,93 a	86,12 a	479,07 a
$A_3 = 200 \text{ kg/ha}$	58,70 a	91,00 a	496,60 a

Keterangan : Angka rata-rata diikuti huruf kecil pada kolom yang sama menunjukan tidak berbeda nyata menurut Uji F pada taraf 5%

Unsur N berperan merangsang pertumbuhan batang, sedangkan P mendukung pembelahan sel dan fotosintesis (Suryati et al., 2015; Jamilah et al., 2016). Karena suplai kedua unsur ini relatif merata pada semua perlakuan, respon tinggi tanaman tidak menunjukkan variasi signifikan. Selain

itu, faktor genetik kultivar Bonanza F1 juga memengaruhi keseragaman pertumbuhan.

i. Jumlah Daun per Tanaman (helai)

Hasil analisis sidik ragam menunjukan tidak ada interaksi dan pengaruh mandiri terhadap rata-rata jumlah daun pada semua perlakuan. Hasil analisis jumlah daun 14, 28, dan 42 HST tercantum pada lampiran 12, 13, dan 14.

Tabel 10. Pemberian Batuan Fosfat Alam dan Pupuk Kandang Ayam Terhadap Jumlah Daun Jagung Manis Umur 14, 28, dan 42 HST

Perlakuan	Rata-rata Jumlah Daun (helai)			
Periakuan	14 HST	28 HST	42 HST	
$F_1 = 250 \text{ kg/ha}$	8,83 a	12,05 a	18,40 a	
$F_2 = 350 \text{ kg/ha}$	9,07 a	12,32 a	17,80 a	
$F_3 = 450 \text{ kg/ha}$	10,30 a	12,66 a	19,17 a	
$A_1 = 5 \text{ ton/ha}$	9,17 a	12,66 a	18,17 a	
$A_2 = 10 \text{ ton/ha}$	9,40 a	11,77 a	18,20 a	
$A_3 = 15 \text{ ton/ha}$	9,63 a	12,60 a	19,00 a	

Keterangan : Angka rata-rata diikuti huruf kecil pada kolom yang sama menunjukan tidak berbeda nyata menurut Uji F pada taraf 5%

Berdasarkan tabel 10, menunjukkan bahwa pemberian batuan fosfat alam dan pupuk kandang ayam tidak berpengaruh nyata pada semua perlakuan. Hal ini diduga karena jumlah daun lebih dipengaruhi oleh faktor genetik dari tanaman jagung manis yang menyebabkan jumlah daun yang hampir sama. Sesuai dengan pendapat Martoyo (2001) bahwa respon pupuk terhadap jumlah daun pada umumnya kurang memberikan gambaran yang jelas karena

pertumbuhan daun mempunyai hubungan yang erat dengan faktor genetik.

Diameter Batang (cm)

Hasil analisis menunjukkan bahwa pemberian batuan fosfat alam dan pupuk kandang ayam memberikan pengaruh tidak nyata pada umur 28 HST dan memberikan pengaruh mandiri batuan fosfat alam pada umur 42 HST.

Tabel 11. Pemberian Batuan Fosfat Alam dan Pupuk Kandang Ayam Terhadap Diameter Batang Jagung Manis Umur 28 dan 42 HST

Butting sugaing strains official 20 dain 12 1151				
Perlakuan ——	Rata-rata Diameter Batang (mm)			
renakuan	28 HST	42 HST		
$F_1 = 250 \text{ kg/ha}$	2,80 a	6,77 a		
$F_2 = 350 \text{ kg/ha}$	2,83 a	7,50 b		
$F_3 = 450 \text{ kg/ha}$	3,33 a	6,87 a		
$A_1 = 5 \text{ ton/ha}$	3,00 a	7,00 a		
$A_2 = 10 \text{ ton/ha}$	2,87 a	7,17 a		
$A_3 = 15 \text{ ton/ha}$	3,10 a	6,97 a		

Keterangan : Angka rata-rata diikuti huruf kecil pada kolom yang sama menunjukan tidak berbeda nyata menurut Uji F pada taraf 5%

Umur 28 HST, diameter batang tidak berbeda nyata. Namun pada 42 HST, perlakuan BFA dosis 350 kg/ha (F2) memberikan pengaruh signifikan dengan diameter batang terbesar (7,5 mm) dibanding dosis lainnya. Hal ini membuktikan bahwa ketersediaan fosfor dalam jumlah optimum mampu meningkatkan pembelahan dan perkembangan sel batang. Menurut

Sutedjo (2008), fosfor berperan penting dalam proses metabolisme energi yang berkontribusi pada pertumbuhan batang tanaman.

Sementara itu, pupuk kandang ayam tidak berpengaruh nyata terhadap diameter batang. Hal ini kemungkinan karena sifat pupuk organik yang slow release, sehingga pelepasan haranya tidak cepat tersedia pada fase vegetatif awal (Xiaoyu et al., 2013).

Volume Akar (ml)

Hasil analisis sidik ragam menunjukan bahwa perlakuan batuan fosfat alam dan pupuk kandang ayam memberikan pengaruh tidak nyata pada umur 28 HST. Namun, menunjukkan adanya interaksi pada pemberian batuan fosfat alam dan pupuk kandang ayam pada umur 42 HST.

Tabel 12. Pemberian Batuan Fosfat Alam dan Pupuk Kandang Ayam Terhadap Volume Akar Jagung Manis Umur 28 HST

Dorlolayon	Rata-rata Volume Akar (ml)		
Perlakuan	28 HST		
$F_1 = 250 \text{ kg/ha}$	21,0 a		
$F_2 = 350 \text{ kg/ha}$	19,2 a		
$F_3 = 450 \text{ kg/ha}$	24,8 a		
$A_1 = 5 \text{ ton/ha}$	23,7 a		
$A_2 = 10 \text{ ton/ha}$	23,0 a		
$A_3 = 15 \text{ ton/ha}$	18,3 a		

Keterangan : Angka rata-rata diikuti huruf kecil pada kolom yang sama menunjukan tidak berbeda nyata menurut Uji F pada taraf 5%

Pada 28 HST, volume akar tidak berbeda nyata antar perlakuan. Namun pada 42 HST, terdapat interaksi signifikan antara BFA dan pupuk kandang ayam. Kombinasi F1A3 (250 kg/ha BFA + 15 ton/ha pupuk kandang ayam) menghasilkan volume akar lebih besar dibanding kombinasi lain. Interaksi ini terjadi karena asam organik hasil dekomposisi pupuk kandang ayam mampu meningkatkan kelarutan fosfat

dari BFA, sehingga unsur P lebih tersedia bagi tanaman (Priyadi, 1999; Sari et al., 2016).

Unsur P diketahui berperan penting dalam pembentukan dan perkembangan akar (Hardjowigeno, 2010). Dengan perakaran yang lebih baik, tanaman lebih mampu menyerap air dan hara, sehingga mendukung pertumbuhan selanjutnya.

Tabel 13. Pemberian Batuan Fosfat Alam dan Pupuk Kandang Ayam Terhadap Volume Akar Jagung Manis Umur 42 HST

		Batuan Fosfat Alan	n
Pupuk Kandang Ayam	F1 250 kg/ha	F2 350 kg/ha	F3 450 kg/ha
A1	7,17 a	6,83 a	20,33 b
5 ton/ha	A	A	В
A2	13,33 b	10,33 a	7,33 a
10 ton/ha	A	A	A
A3	16,00 a	7,83 a	10,67 a
15 ton/ha	В	A	A

Keterangan: Angka rata-rata diikuti huruf kecil pada kolom yang sama dan huruf besar pada baris yang sama menunjukan tidak berbeda nyata menurut Uji Jarak Berganda Duncan pada taraf 5%.

Tabel 13 menunjukan adanya pengaruh interaksi antara perlakuan batuan fosfat alam dan pupuk kandang ayam terhadap volume akar pada umur 42 HST. Perlakuan batuan fosfat alam dosis 350 kg/ha dengan semua kombinasi perlakuan pupuk kandang ayam tidak berpengaruh nyata terhadap volume akar. Sedangkan pada dosis 250 kg/ha dan dosis 450 kg/ha berpengaruh nyata terhadap volume akar.

Peningkatan dosis batuan fosfat alam diikuti dengan peningkatan volume akar ini disebabkan oleh fungsi dari unsur hara P yang berasal dari batuan fosfat, yaitu meningkatkan perkembangan akar (Sarwono Hardjowigeno, 2010).

Perlakuan pupuk kandang ayam dosis 10 ton/ha dengan semua kombinasi perlakuan batuan fosfat alam tidak berpengaruh nyata terhadap volume akar. Sedangkan pada dosis 5 ton/ha dan dosis 15 ton/ha berpengaruh nyata terhadap volume akar.

Hal ini didukung oleh pernyataan (Sari *et al.*, 2016) yang menyatakan bahwa pemberian pupuk kandang ayam

pada tanaman sangat berperan dalam meningkatkan organisme tanah sehingga ketersediaan unsur hara terpenuhi dengan baik. Hal ini sejalan dengan pendapat Priyadi (1999) dalam Rafli Munir dan Yusmanidar Arifin (2010),yang bahwa apabila pupuk menjelaskan kandang yang diberikan ke dalam tanah mampu meningkatkan akan maka aktivitas mikroorganisme tanah sehingga bahan organik akan perombakan berlangsung lebih cepat dan tanaman dapat tumbuh dengan baik.

Interaksi antara batuan fosfat alam dan pupuk kandang ayam terjadi karena sumber unsur hara P (fosfor) dari batuan fosfat alam berperan untuk merangsang perumbuhan akar dalam perkembangan akar (Sugeng Winarso, 2005).

Diameter Tongkol per Tanaman (cm)

Analisis sidik ragam menunjukan bahwa perlakuan batuan fosfat alam dan pupuk kandang ayam tidak terdapat interaksi maupun pengaruh mandiri terhadap rata-rata diameter tongkol berkelobot (Tabel 14).

Tabel 14. Pemberian Batuan Fosfat Alam dan Pupuk Kandang Ayam Terhadap Diameter Tongkol per Tanaman (cm)

Perlakuan	Rata-rata Diameter Tongkol per Tanaman (cm)
F1 = 250 kg/ha	11,36 a
F2 = 350 kg/ha	11,65 a
F3 = 450 kg/ha	12,91 a
A1 = 5 ton/ha	11,56 a
A2 = 10 ton/ha	10,93 a
A3 = 15 ton/ha	13,44 a

Keterangan : Angka rata-rata diikuti huruf kecil pada kolom yang sama menunjukan tidak berbeda nyata menurut Uji F pada taraf 5%

Hasil pengamatan menunjukkan bahwa diameter tongkol tidak dipengaruhi secara nyata oleh perlakuan BFA maupun pupuk kandang ayam. Rata-rata diameter tongkol berkisar 11,36–13,44 cm. Hal ini sejalan dengan penelitian Sulakhudin (2015) yang melaporkan bahwa variasi dosis BFA tidak memberikan pengaruh nyata terhadap ukuran tongkol.

Ketersediaan unsur hara selama pengisian biji menjadi faktor penting yang menentukan ukuran tongkol. Namun dalam penelitian ini, kondisi lahan dengan kandungan fosfor tinggi (116,1 ppm) mungkin telah mencukupi kebutuhan tanaman, sehingga tambahan perlakuan tidak menunjukkan efek signifikan.

Bobot Tongkol per Petak dan per Tanaman (kg)

Hasil analisis sidik ragam menunjukan bahwa perlakuan batuan fosfat alam dan pupuk kandang ayam tidak terdapat interaksi maupun pengaruh mandiri terhadap rata-rata bobot tongkol per petak dan per tanaman (Tabel 15).

Tabel 15. Pemberian Batuan Fosfat Alam dan Pupuk Kandang Ayam Terhadap Bobot

Tongkol per Petak dan per Tanaman (kg)

Perlakuan	Rata-rata Bobot Tongkol (kg)	
	Petak	Tanaman
F1 = 250 kg/ha	1,36 a	0,69 a
F2 = 350 kg/ha	1,40 a	0,68 a
F3 = 450 kg/ha	1,37 a	0,78 a
A1 = 5 ton/ha	1,35 a	0,66 a
A2 = 10 ton/ha	1,34 a	0,69 a
A3 = 15 ton/ha	1,44 a	0,80 a

Keterangan: Angka rata-rata diikuti huruf kecil pada kolom yang sama menunjukan tidak berbeda nyata menurut Uji F pada taraf 5%

Bobot tongkol per tanaman maupun per petak tidak menunjukkan perbedaan signifikan antar perlakuan. Rata-rata bobot tongkol per tanaman berkisar 0,66-0,80 kg, sedangkan per petak 1,35–1,44 kg. Hal ini menunjukkan bahwa ketersediaan hara pada semua perlakuan relatif memadai, sehingga perbedaan dosis BFA maupun pupuk kandang ayam tidak menghasilkan perbedaan yang jelas. Menurut Sudjijo (1996), bobot tongkol sangat dipengaruhi oleh jumlah fotosintat yang terbentuk.

Apabila unsur hara tersedia cukup, fotosintat yang dihasilkan tanaman akan mencukupi kebutuhan pengisian tongkol.

ii. Jumlah Tongkol per Petak dan per Tanaman (buah)

Hasil analisis sidik ragam menunjukan bahwa perlakuan batuan fosfat alam dan pupuk kandang ayam tidak terdapat interaksi maupun pengaruh rata-rata jumlah mandiri terhadap tongkol per petak dan per tanaman (Tabel 16).

Tabel 16. Pemberian Batuan Fosfat Alam dan Pupuk Kandang Ayam Terhadap Jumlah Tongkol per Petak dan per Tanaman (buah)

Perlakuan	Rata-rata Jumlah Tongkol (buah)		
_	Petak	Tanaman	
F1 = 250 kg/ha	1,96 a	2,10 a	
F2 = 350 kg/ha	1,96 a	2,07 a	
F3 = 450 kg/ha	2,13 a	2,40 a	
A1 = 5 ton/ha	1,96 a	2,07 a	
A2 = 10 ton/ha	1,88 a	1,93 a	
A3 = 15 ton/ha	2,21 a	2,57 a	

Keterangan: Angka rata-rata diikuti huruf kecil pada kolom yang sama menunjukan tidak berbeda nyata menurut Uji F pada taraf 5%

Jumlah tongkol per tanaman dan per petak juga tidak berbeda nyata. Ratarata jumlah tongkol per tanaman sekitar 2 buah. Faktor genetik varietas Bonanza F1 lebih dominan memengaruhi jumlah tongkol dibandingkan perlakuan pemupukan. Hal ini sejalan dengan Vol 13 No 1, Maret 2025

pendapat Chandrasekaran et al. (2010) bahwa unsur P berperan dalam pembentukan biji, tetapi responnya sangat bergantung pada sifat varietas.

4. KESIMPULAN DAN SARAN

a. Kesimpulan

Penelitian ini membuktikan bahwa pemberian batuan fosfat alam (BFA) dan pupuk kandang ayam berpengaruh terhadap beberapa aspek pertumbuhan jagung manis kultivar Bonanza F1, meskipun sebagian besar parameter tidak menunjukkan perbedaan nyata. Hasil penelitian mengungkapkan bahwa terdapat interaksi signifikan antara BFA dan pupuk kandang ayam terhadap volume akar pada umur 42 HST, yang menunjukkan bahwa kombinasi kedua pupuk tersebut mampu meningkatkan perkembangan sistem perakaran. Selain itu, perlakuan BFA 350 kg/ha secara mandiri memberikan hasil terbaik pada diameter batang. Namun, untuk parameter lain seperti tinggi tanaman, jumlah daun, diameter tongkol, bobot tongkol, dan jumlah tongkol, perbedaan perlakuan pengaruh tidak memberikan nvata. Temuan ini menegaskan bahwa penggunaan **BFA** bersama pupuk kandang ayam berpotensi meningkatkan efisiensi pemupukan, memperbaiki struktur tanah, serta mendukung konsep pertanian berkelanjutan. Oleh karena itu, kombinasi pupuk organik dan fosfat alam dapat dijadikan alternatif strategi pemupukan untuk meningkatkan produktivitas jagung manis, meskipun diperlukan penelitian lebih lanjut pada berbagai dosis dan lokasi berbeda untuk mendapatkan rekomendasi yang lebih luas.

b. Saran

Berdasarkan hasil penelitian. disarankan agar petani jagung manis mempertimbangkan penggunaan batuan fosfat alam (BFA) dan pupuk kandang ayam secara bersamaan karena interaksi keduanya terbukti mampu meningkatkan perkembangan akar yang berperan penting dalam penyerapan hara. Pemberian BFA pada dosis 350 kg/ha dijadikan dapat acuan karena menunjukkan hasil terbaik pada diameter batang, meskipun diperlukan penelitian

lanjutan untuk menguji konsistensi hasil pada kondisi lahan dan iklim yang berbeda. Selain itu, penggunaan pupuk kandang ayam dalam dosis lebih tinggi berpotensi memperbaiki sifat fisik dan kimia tanah dalam jangka panjang, sehingga mendukung dapat produksi. keberlanjutan Untuk memperkuat temuan ini, penelitian selanjutnya sebaiknya dilakukan dengan kombinasi dosis yang lebih beragam, percobaan berbeda. lokasi memperhatikan faktor lingkungan seperti curah hujan dan tipe tanah, agar rekomendasi pemupukan lebih aplikatif bagi petani di berbagai daerah.

DAFTAR PUSTAKA

- Afandie Rosmarkam, Nasih Widya Yuwono. 2002. Ilmu Kesuburan Tanah. Kanisius: Yogyakarta.
- Agustina, L. 2004. Dasar Nutrisi Tanaman. PT. Rineka Cipta. Jakarta. 14, 58-59.
- Alfandi., Amran Jaenudin, dan Yayan Suryana. 2015. Pengaruh Inokulasi Cendawan Mikoriza Arbuskula dan Pemberian Rock Phosphate Terhadap Serapan P, Pertumbuhan, dan Hasil Padi (Oryza Sativa L.) Varietas Inpari 19. Universitas Swadaya Gunung Jati.
- Annisa, W., A. Fahmi, dan A. Jumberi. 2007. Pengaruh pemberian fosfat alam asal Maroko terhadap pertumbuhan padi sawah di lahan sulfat masam. J. Tanah Trop 12 (2): 85-91.
- Augustien, N., Surhardjono, H. 2016.
 Peranan berbagai Komposisi
 Media Tanam Organik terhadap
 Tanaman Sawi (*Brassica juncea*L.) di Polybag. *Jurnal Agritop Ilmu-ilmu Pertanian*, 14(1): 5458.
- B. Chandrasekaran, K. Annadurai, E. Somanusandaram, 2010. A textboot of Agronomy. New Age International, New Delhi.

- Barnito, N. 2009. Budidaya Tanaman Jagung. Yogyakarta. Suka Abadi.
- CABI. 2019. Spodoptera frugiperda (Fall Armyworm).

 https://www.cabi.org/ISC/fallarmyworm. Diakses 14 Desember 2021.
- Cahya J. E. dan N. Herlina. 2018. Uji potensi enam varietas jagung manis (*Zea mays saccharata* Strut) di dataran rendah Pamekasan. *J. Produksi Tanaman*. 6 (1): 92 100.
- Dalimunthe, Pauji., Armaini, dan Sri Yoseva. 2017. Efek Residu Pupuk Tricho-Kompos Limbah Jagung dan Rock Phosphate Terhadap Pertumbuhan dan Produksi Tanaman Jagung Manis (Zea Mays Var. Saccharata Sturt) di Lahan Gambut. JOM FAPERTA Vol. 4 No. 1
- Damanik, M. M. B., B. E. Hasibuan., Fauzi., Sarifuddin., H. Hanum. 2010. Kesuburan Tanah dan Pemupukan. USU Press. Medan.
- Diamond, R.B., J.S. Adiningsih, J. Prawirasumantri, dan S. Partohardjono. 1986. Responses of upland crops to water soluble P and phoshate rocks. *Dalam* Prosiding Lokakarya Efisiensi Penggunaan Pupuk. Cipayung, 6-7Agustus 1986.1-9
- Djuniwati, S.A. 2003. Pengaruh bahan organik (*Pueraria javanica*) dan fosfat alam terhadap pertumbuhan dan serapan P jagung (*Zea mays*) pada Andisol Pasir Sarongge. *Jurnal Tanah Lingkungan* 8 (2):22.
- Fort, H.D. 1998. Dasar-Dasar Ilmu Tanah. Penerbit Bharatara Aksara. Jakarta. Hal.: 552-554.
- Ginting, R. C. B. R. Saraswati. dan E. Husen. 2006. Pupuk Organik dan Pupuk Hayati. Balai Besar Litbang Sumber Daya Lahan Pertanian. Bogor.
- Hara, Bala Fagbayide, M.G 2009. Effect of nitrogen on the growth and

- calyx yield of two cultivars of roselle in Northern Guinea Savanna. Middle East Journalof Scientific Research. 4. 1986. Utlization of Agrowastes for Building Materials. International.
- Hardjowigeno, Sarwono. 2015. Ilmu Tanah. Akademika Pressindo. Jakarta.
- Hartatik. W., Setvorini. D. L.R. Widowati, dan S. Widati. 2002. Laporan Akhir Penelitian Teknologi Pengelolaan Hara Budidaya pada Pertanian Organik. Laporan Bagian Proyek Penelitian Sumberdaya Tanah Pengkajian Proyek Teknologi Pertanian Partisipatif.
- Hasibuan, N.H. 2003. Pengaruh Bahan Organik dan Fosfat Alam Terhadap Ketersedian Fosfor dan Kelarutan Fosfat alam pada Ultisol Lampung. Skripsi. Institu Pertanian Bogor. Bogor.Hal: 75.
- Hayati, E., Sabarudin., Rahmawati. 2012. Pengaruh Jumlah Mata Tunas dan Komposisi Media Tanam terhadap Pertumbuhan Setek Tanaman Jarak Pagar (*Jatropha* curcas L.). Jurnal Agrista, 16(3): 129-134.
- Iriany, Yasin dan Takdir M. 2007. Jagung
 Teknik Produksi dan
 Pengembangan. Badan
 Penelitian Serelia dan Pusat
 Penelitian Pengembangan.
 Maros.
- Jamilah, M., Purnomowati, P., dan Dwiputranto, U. 2016. Pertumbuhan Cabai Merah (*Capsicum annuum* L.) pada Tanah Masam yang Diinokulasi Mikoriza Vesikula Arbuskula (MVA) Campuran dan Pupuk Fosfat. Majalah Ilmiah Biologi Biosfera: A Scientific Journal. Vol.33,39(1):37,39
- Jatnika, W., Abadi, A, L., dan Aini, L, Q. 2013 pengaruh Aplikasi *Bacillus sp*. Terhadap Perkembangan Penyakit Bulai Yang Disebabkan

- Oleh Jamur Patogen *Peronosclerospora maydis* Pada Tanaman Jagung. Jurnal HPT Vol 1, No. 4.
- Kasri, Adnan. 2015. Pengaruh Pupuk Kandang Ayam dan N, P, K Terhadap Pertumbuhan dan Produksi Jagung Manis (*Zea Mays Saccharata* Sturt) di Tanah Ultisol. JOM Faperta Vol.2.No.1
- Kementerian Pertanian. 2010. Standar Operasional Prosedur (SOP) Jagung Manis. Jakarta : Direktorat Budidaya Tanaman Sayuran dan Biofarmaka.
- Kementerian Pertanian. 2019 Fall Pengenalan Armyworm (Spodoptera frigiperda J. E. Smith) Hama Baru Pada Tanaman Jagung di Indonesia. Jakarta : Balai Penelitian Tanaman Serealia. 64 p.
- Koswara, S. 2009. Teknologi Pengolahan Jagung (Teori dan Praktek). eBook Pangan. 41 hal.
- Marlina, N., Aminah, R.I.S., Rosmiah., Setel, L.R. 2015. Aplikasi Pupuk Kandang Kotoran Ayam pada Tanaman Kacang Tanah (Arachis hypogeae L.). Jurnal Biosaintifika, 7 (2): 136-141.
- Marsono dan Sigit. 2004. Pupuk Akar Jenis dan Aplikasi. Penebar Swadaya. Jakarta.
- Martoyo, K. 2001. Penanaman Beberapa Sifat Fisik Tanah Ultisol pada Penyebaran Akar Tanaman Kelapa Sawit. PPKS. Medan.
- Maulana, Airlangga Ichwan., Alfandi dan Siti Wahyuni. 2017.
 Pengaruh Dosis Batuan Fosfat Dan Dolomit Terhadap Pertumbuhan Dan Hasil Kacang Tanah (Arachis Hypogaea L) Kultivar Tuban. Jurnal AGROSWAGATI 5 (2)
- M. Azrai, Made j, mejaya dan M.jasin HG. 2009. Pemuliaan jagung khusus.
 Balitsereralia.http/balitsereal.litb ang.deptan.go.id/ind/bjagung/tuj uh/pdf.

- M. Syukur dan Azis Rifianto. 2013. Jagung Manis. Penebar Swadaya. Jakarta.
- Munir, Rafli., Widodo Haryoko. 2010. Respon Bibit Manggis Hasil Kultur Jaringan pada Tahap Aklimatisasi terhadap Cendawan Mikoriza Arbuskular Jerami. Volume 3 No 1.
- Nainggolan, Normaida., Jurnawaty Sjofjan, Edison Anom. 2016. Pengaruh Abu Sekam Padi dan Beberapa Jenis Pupuk Kandang Terhadap Pertumbuhan dan Produksi Tanaman Jagung (*Zea mays Saccharata* Sturt .) Di Lahan Gambut. JOM FAPERTA, VOL 3 .No 1.
- Noor, A. 2008. Perbaikan Sifat Kimia Tanah Lahan Kering dengan Fosfat Alam, Bakteri Pelarut Fosfat dan Pupuk Kandang Untuk Meningkatkan Hasil Kedelai. J. Tanah Trop. 13(1): 49-58.
- Norman Terry and Albert Ulrich. 1973. Effects of Phosphorus Deficiency on the Photosynthesis and Respiration of Leaves of Sugar Beet. *Plant Physiol*. 51:43-47.
- Novizan. 2003. Petunjuk Pemupukan yang Efektif. Agro Media Pustaka. Jakarta.
- Pane, M. A., M. M. B. Damanik. dan B. Sitorus. 2014. Pemberian bahan organik kompos jerami padi dan abu sekam dalam memperbaiki sifat kimia tanah ultisol pertumbuhan tanaman jagung. *J. Online Agroekoteknologi*. 2 (4): 1426 1432.
- Peraturan Menteri Pertanian Nomor 70/Permentan/SR.140/10/2011.
- Purwono dan Hartono. 2007. Bertanam Jagung Unggul. Bogor: Penebar Swadaya.
- Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian, 2016.
- Pusat Penelitian dan Pengembangan Tanah dan Agroklimat. 2001.

- Atlas Arahan Tata Ruang Pertanian Indonesia Skala 1:1.000.000. Puslitbangtanak. Bogor. Hal. 37
- Ridwan, H. M., M, Nurdin dan S. Ratih.

 2015. Pengaruh Paenibacillus
 polymyxa dan Pseudomonas
 fluorescens Dalam Molase
 Terhadap Keterjadian Penyakit
 Bulai (Perenosclerospora
 maydis L.) Pada Tanaman
 Jagung Manis. Agrotek Tropika,
 3(1): 144-147.
- Sari, W. I., S. Fajriani, dan Sudiarso. 2016. Respon pertumbuhan tanaman jagung manis (*Zea mays saccharata* Sturt.) terhadap penambahan berbagai dosis pupuk organik vermikompos dan pupuk anorganik. *J. Produksi Tanaman.* 4 (1): 57 62.
- Soelaeman, Y. 2008. Efektivitas Pupuk Kandang dalam Meningkatkan Ketersediaan Fosfat, Pertumbuan dan Hasil Padi dan Jagung pada Lahan Kering Masam.J. *Tanah Tropika*. 13(1): 41-47.
- Suarni dan Muh. Yasin. 2011. Jagung Sebagai Sumber Pangan Fungsional. Jurnal Iptek Tanaman Pangan. Vol. 6. No. 1.
- Subekti, Syafruddin, Efendi dan Sunarti. 2007. Morfologi Tanaman dan Fase Pertumbuhan Jagung. Jakarta.
- Sudjijo. 1996. Dosis Pupuk Gandapan pada Tanaman Tomat Secara Hidroponik. Balai Penelitian Solok.
- Sulakhudin dan Bambang Hendro Sunarminto. 2015. Pengaruh Pengkayaan Pupuk Organik Dengan Bfa Dan Zeolit Terhadap Pertumbuhan Dan Hasil Jagung Manis. Jurnal Pedon Tropika Edisi 1 Vol 1 (25-36).
- Suryaatmaja, Bagas Heri., Ellis Nihayati. 2020. Aplikasi Pupuk Urea dan Pupuk Kandang Ayam pada Pertumbuhan dan Hasil Tanaman Jagung Manis (*Zea mays*

- saccharata Sturt L.). Jurnal Produksi Tanaman Vol. 8 No. 2.
- Suryati, D., Sampurno, dan E. Anom. 2015. Uji beberapa konsentrasi pupuk azolla (*Azolla pinnata*) pada pertumbuhan bibit tanaman kelapa sawit (*Elaeis guineensis* Jacq.) di pembibitan utama. *JOM Faperta*. 2 (1): 1 13.
- Sutanto, R. 2002. Penerapan pertanian organik: pemasyarakatan dan pengembangannya. Kanisius. Yogyakarta. 219 hal.
- Sutedjo, M.M. 2008. Pupuk dan Cara Pemupukan Edisi Revisi. Rineka Cipta. Jakarta.
- Suwahyono, U. 2011. Petunjuk Praktis Penggunaan Pupuk Organik Secara Efektif dan Efisien. Penebar Swadaya. Jakarta.
- Syam, N., Suriyanti., Killian, L. H. 2017.

 Pengaruh Jenis Pupuk Organik
 dan Urea terhadap Pertumbuhan
 dan Hasil Tanaman Seledri
 (Apium graveolus L.). Jurnal
 Agrotek, 1(2): 43-53.
- Tim Karya Tani Mandiri. 2010. Pedoman Bertanam Jagung. Bandung.
- Tufaila, M. Dewi Darma Laksana, dan Syamsu Alam. 2014. Aplikasi Kompos Kotoran Ayam Untuk Meningkatkan Hasil Tanaman Mentimun (*Cucumis sativus* L.) di Tanah Masam. Jurnal Agroteknos. Vol. 4 No. 2. Hal 120-127.
- Wahida, A., A. Fahmi, dan A. Jumberi. 2007. Pengaruh Pemberian Fosfat Alam Asal Maroko terhadap Pertumbuhan Padi di Lahan Sulfat Masam. J. Tanah Tropik, 12(2): 85-91.
- Wicaksono, R. D. H. Pangaribuan, A. Edy dan H. Pujisiswanto. 2019. Pengaruh pupuk bio-slurry padat dengan kombinasi dosis pupuk NPK pada pertumbuhan dan produksi jagung manis (*Zea mays saccharata* Sturt). *J. Agrotek Tropika*. 7 (1): 265 272.

- Widyanto, A., H. T. Sebayang, dan S. Soekartomo. 2013. Pengaruh Pengaplikasian Zeloit dan Pupuk Urea Pada Pertumbuhan dan Hasil Tanaman Jagung Manis (*Zea mays saccharata* Sturt). Jurnal Produksi Tanaman. 1(4):378-388.
- Wijaya. 2018. Perencangan Percobaan Bidang Pertanian (Aplikasi Ms Excel dan SPP). Cirebon.
- Winarso, Sugeng. 2005. Kesuburan Tanah Dasar Kesehatan dan Kualitas Tanah. Gaya Media: Yogyakarta.
- Wirosoedarmo, R., Sutanhaji, A, T., K, Evi dan W. Rizky. 2011. Evaluasi Kesesuaian Lahan Untuk Tanaman Jagung Menggunakan Metode Analisis Spasial. Agritech, Vol. 31, No:
- Xiaoyu, N., W. Yuezin, W. Zhengyan, W. Lin, Q. Guannan, Y. Lixiang. 2013. A novel slow release urea fertilizer: physical and chemical analysis of its structure and study of its release mechanism. Biosystem Engineering. 115:274-282.